

# **INTEGRAL** Science Data Centre

# JEM-X ANALYSIS USER MANUAL

| Reference | : | ISDC/OSA-UM-JEMX |
|-----------|---|------------------|
| Issue     | : | 10.0             |
| Date      | : | September 2012   |

INTEGRAL Science Data Centre Chemin d'Écogia 16 CH–1290 Versoix Switzerland

http://isdc.unige.ch

## Authors and Approvals

| ISDC ISDC      | JEM-X | Analysis User Manual |
|----------------|-------|----------------------|
| September 2012 | 10.0  |                      |

| Prepared by : | M. Chernyakova<br>P. Kretschmar<br>JEM-X team<br>A. Neronov<br>V. Beckmann<br>L. Pavan |
|---------------|----------------------------------------------------------------------------------------|
| Agreed by :   | C. Ferrigno                                                                            |
| Approved by : | T. JL. Courvoisier                                                                     |

## **Document Status Sheet**

| A A A A A A A A A A A A A A A A A A A |         |                                                                                                                   |
|---------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------|
| ISDC ISDC                             | JEM-X   | K Analysis User Manual                                                                                            |
| 2 April 2003                          | 1.0     | First Release.                                                                                                    |
| 19 May 2003                           | 1.1     | Update of the First Release.                                                                                      |
|                                       |         | Section 5, 9, Tables 60, 14, 21 and bibliography were updated.                                                    |
| 18 July 2003                          | 2.0     | Second Release.                                                                                                   |
|                                       |         | Sections 5, 6, 9, 8.1, Appendix C and bibliography were updated. Section 8.11 was added.                          |
| 8 December 2003                       | 3.0     | Third Release.                                                                                                    |
|                                       |         | Part I and the bibliography were updated. Section 6 was rewritten.                                                |
| 19 July 2004                          | 4.0     | Fourth Release.                                                                                                   |
| C. D. sambar 0004                     | 4.0     | Sections 6, 9, and the bibliography were updated.                                                                 |
| 6 December 2004                       | 4.2     | Update of Fourth Release.<br>Sections 6, 8.6, 9, Table 41 and the bibliography were up-                           |
|                                       |         | dated.                                                                                                            |
| 3 June 2005                           | 5.0     | Fifth Release                                                                                                     |
|                                       |         | Descriptions of j_ima_iros and j_ima_mosaic are the main                                                          |
|                                       |         | changes.                                                                                                          |
| 21 December 2006                      | 6.0     | Sixth Release                                                                                                     |
|                                       |         | Significant changes in the COR level, spectral extraction from mosaic images added                                |
| 06 February 2007                      | 6.0.1   | Update of the Sixth Release                                                                                       |
|                                       |         | RMF Calibration instances updated, a new known issue added.                                                       |
| 14 September                          | 7.0     | Seventh Release: j_ima_iros updates, new tool                                                                     |
| 2007                                  |         | j_ima_src_locator.                                                                                                |
|                                       |         |                                                                                                                   |
| 25 February 2008                      | 7.0     | minor corrections.                                                                                                |
| 31 August 2009                        | 8.0     | Significant changes in sections 7.6, 7.7.                                                                         |
| 26 April 2010                         | 9.0     | Several fixes in the cook book. Correction of Table 5 in                                                          |
| 12 July 2010                          | 9.1     | Section 7.6.1 Update of known limitations and URLs<br>Update of binning parameters example in cookbook            |
| 12 July 2010                          | 3.1     | (j_rebin_rmf)                                                                                                     |
| 03 September                          | 9.2     | Remove IMA2_viewVar parameter setting in example of sec-                                                          |
| 2010                                  |         | tion 7.6.6 (Spectral extraction) of the cookbook + minor                                                          |
|                                       |         | typo                                                                                                              |
| 26 November 2010                      | 9.3     | Update of Figure 8 : detection limit                                                                              |
| 18 September                          | 10.0    | Several updates in the cook book, known limitations, and<br>URLs. Added new sections "Useful to know" and "Useful |
| 2012                                  |         | recipes for JEM-X data analysis" (adapted from IBIS UM).                                                          |
|                                       |         | j_ima_mosaic updates.                                                                                             |
| 19 SEP 2012                           | Printed |                                                                                                                   |

## Contents

| Acronyms and Abbreviation | as . | • |  |  | <br>• |  | • | • | • |  | <br>• | • |  | • | <br>• | • | • |  | xi  |
|---------------------------|------|---|--|--|-------|--|---|---|---|--|-------|---|--|---|-------|---|---|--|-----|
| Glossary of Terms         |      |   |  |  | <br>• |  | • | • |   |  |       | • |  | • |       |   | • |  | xii |
| Introduction              |      |   |  |  | <br>• |  |   | • |   |  |       |   |  | • |       |   |   |  | 1   |

## I Instrument Definition

| n |  |
|---|--|
| 1 |  |
| _ |  |

| 1113 | suum   |                                        | 4  |  |  |  |  |  |  |  |
|------|--------|----------------------------------------|----|--|--|--|--|--|--|--|
| 1    | Scient | ntific Performance Summary             |    |  |  |  |  |  |  |  |
| 2    | Instru | ment Description                       | 3  |  |  |  |  |  |  |  |
|      | 2.1    | The Overall Design                     | 3  |  |  |  |  |  |  |  |
|      | 2.2    | The Detector                           | 3  |  |  |  |  |  |  |  |
|      | 2.3    | Coded Mask                             | 6  |  |  |  |  |  |  |  |
| 3    | Instru | ment Operations                        | 7  |  |  |  |  |  |  |  |
|      | 3.1    | Telemetry Formats and Data Compression | 7  |  |  |  |  |  |  |  |
|      | 3.2    | Energy Binning                         | 7  |  |  |  |  |  |  |  |
|      |        | 3.2.1 PHA Binning                      | 7  |  |  |  |  |  |  |  |
|      |        | <b>3.2.2</b> PI Binning                | 8  |  |  |  |  |  |  |  |
| 4    | Perfor | mance of the Instrument                | 10 |  |  |  |  |  |  |  |
|      | 4.1    | Position Resolution                    | 10 |  |  |  |  |  |  |  |
|      | 4.2    | Energy Resolution                      | 11 |  |  |  |  |  |  |  |
|      | 4.3    | Background                             | 11 |  |  |  |  |  |  |  |
|      | 4.4    | Sensitivity                            | 12 |  |  |  |  |  |  |  |

### II Data Analysis

## 13

|   | ava 11                      |                                                       | 10 |  |  |  |  |  |
|---|-----------------------------|-------------------------------------------------------|----|--|--|--|--|--|
| 5 | Overvi                      | iew                                                   | 13 |  |  |  |  |  |
| 6 | Cookbook for JEM-X analysis |                                                       |    |  |  |  |  |  |
|   | 6.1                         | Setting Up the Analysis Data                          | 16 |  |  |  |  |  |
|   | 6.2                         | Downloading Your Data                                 | 17 |  |  |  |  |  |
|   | 6.3                         | Setting the environment                               | 18 |  |  |  |  |  |
|   | 6.4                         | Useful to know!                                       | 19 |  |  |  |  |  |
|   | 6.5                         | A Walk Through the JEM-X Analysis                     | 20 |  |  |  |  |  |
|   | 6.6                         | Examples of Image Creation                            | 20 |  |  |  |  |  |
|   |                             | 6.6.1 Results from the Image Step                     | 22 |  |  |  |  |  |
|   |                             | 6.6.2 Weak Sources and Sources at the Edge of the FOV | 24 |  |  |  |  |  |

|   |       | 6.6.3          | PIF-cleaning of images around strong sources                            | 24 |
|---|-------|----------------|-------------------------------------------------------------------------|----|
|   |       | 6.6.4          | The Mosaic Image                                                        | 24 |
|   |       | 6.6.5          | Combining JEMX-1 and JEMX-2 mosaic images                               | 28 |
|   |       | 6.6.6          | Finding Sources in the Mosaic Image                                     | 28 |
|   |       | 6.6.7          | Making images in arbitrary energy bands                                 | 30 |
|   | 6.7   | Source S       | Spectra Extraction                                                      | 30 |
|   |       | 6.7.1          | Spectral Extraction at SPE level                                        | 30 |
|   |       | 6.7.2          | Energy binning definition                                               | 30 |
|   |       | 6.7.3          | Spectral response generation                                            | 30 |
|   |       | 6.7.4          | Individual Science Windows Spectra                                      | 31 |
|   |       | 6.7.5          | Combining Spectra of different Science Windows                          | 33 |
|   |       | 6.7.6          | Extracting Spectra from a given Position in the Sky                     | 33 |
|   |       | 6.7.7          | Spectral Extraction from Mosaic Images                                  | 34 |
|   | 6.8   | Source I       | Lightcurve Extraction                                                   | 37 |
|   |       | 6.8.1          | Lightcurve extraction at LCR level                                      | 37 |
|   |       | 6.8.2          | Individual Science Windows Lightcurves                                  | 37 |
|   |       | 6.8.3          | Combining Lightcurves from Different Science Windows                    | 37 |
|   |       | 6.8.4          | Displaying the Results of the Lightcurve Extraction                     | 38 |
|   |       | 6.8.5          | Lightcurve extraction from the IMA step                                 | 39 |
| 7 | Usefu | l recipes f    | or JEM-X data analysis                                                  | 39 |
|   | 7.1   | User G7        | TIs                                                                     | 39 |
|   | 7.2   | Usage of       | f the predefined Bad Time Intervals                                     | 40 |
|   | 7.3   | Rerunni        | ng the Analysis                                                         | 40 |
|   |       | 7.3.1          | Creating a second mosaic in the Observation Group                       | 41 |
|   | 7.4   | Combini        | ing results from different observation groups                           | 41 |
|   |       | 7.4.1          | Creating a mosaic from different observation groups                     | 41 |
|   |       | 7.4.2          | Combining spectra and light<br>curves from different observation groups | 42 |
|   | 7.5   | Create y       | vour own "user catalog"                                                 | 43 |
|   | 7.6   | Barycen        | trisation                                                               | 44 |
|   | 7.7   | Timing         | Analysis without the Deconvolution                                      | 44 |
| 8 | Basic | Data Red       | luction                                                                 | 47 |
|   | 8.1   | $j_{-}correct$ | <i>tion</i>                                                             | 47 |
|   |       | 8.1.1          | <i>j_cor_gain</i>                                                       | 47 |

|       | 8.1.2 $j_{-}c$        | $or_position \ldots \ldots$ | <br> | <br>• • • • | • •   | <br> | <br> | <br>    | 50 |
|-------|-----------------------|-----------------------------|------|-------------|-------|------|------|---------|----|
| 8.2   | jgti                  |                             | <br> | <br>        |       | <br> | <br> | <br>    | 50 |
|       | 8.2.1 gti             | <i>_create</i>              | <br> | <br>        | •••   | <br> | <br> | <br>    | 50 |
|       | 8.2.2 gti             | $\_attitude$                | <br> | <br>        | •••   | <br> | <br> | <br>    | 51 |
|       | 8.2.3 gti             | $_data_gaps$                | <br> | <br>        | •••   | <br> | <br> | <br>    | 51 |
|       | 8.2.4 gti             | $\_import$                  | <br> | <br>        | •••   | <br> | <br> | <br>••• | 51 |
|       | 8.2.5 gti             | $\_merge$                   | <br> | <br>        | •••   | <br> | <br> | <br>    | 52 |
| 8.3   | $j\_dead\_time$       |                             | <br> | <br>        | •••   | <br> | <br> | <br>    | 52 |
|       | 8.3.1 <i>j_d</i>      | $lead\_time\_calc$          | <br> | <br>        | •••   | <br> | <br> | <br>    | 52 |
| 8.4   | $j_{-}cat_{-}extract$ |                             | <br> | <br>        | •••   | <br> | <br> | <br>    | 53 |
| 8.5   | $j\_image\_bin$       |                             | <br> | <br>        | •••   | <br> | <br> | <br>••• | 53 |
|       | $8.5.1 	 j_{-}i_{-}$  | $ma\_shadowgram$            | <br> | <br>        | • • • | <br> | <br> | <br>    | 54 |
| 8.6   | $j_{-}imaging$ .      |                             | <br> | <br>        | • • • | <br> | <br> | <br>    | 55 |
|       | 8.6.1 $j_{-}i_{-}$    | $ma_iros$                   | <br> | <br>        | •••   | <br> | <br> | <br>••• | 57 |
|       | 8.6.2 q_i             | $dentify\_srcs$             | <br> | <br>        | •••   | <br> | <br> | <br>    | 58 |
| 8.7   | $j\_src\_extract$     | $\_spectra$                 | <br> | <br>        | •••   | <br> | <br> | <br>••• | 60 |
|       | 8.7.1 $j_{-}r$        | $eform\_spectra$            | <br> | <br>        | •••   | <br> | <br> | <br>••• | 60 |
| 8.8   | $j\_src\_extract$     | $_lc$                       | <br> | <br>        | •••   | <br> | <br> | <br>••• | 60 |
|       | 8.8.1 <i>j_s</i>      | $rc_lc$                     | <br> | <br>        | •••   | <br> | <br> | <br>••• | 60 |
| 8.9   | $j\_bin\_spectra$     |                             | <br> | <br>        | • • • | <br> | <br> | <br>    | 61 |
|       | 8.9.1 $j_{-}b$        | $in_{evts\_spectra}$        | <br> | <br>        | •••   | <br> | <br> | <br>    | 61 |
|       | 8.9.2 $j_{-}b$        | $in\_spec\_spectra$         | <br> | <br>        | • • • | <br> | <br> | <br>    | 62 |
|       | 8.9.3 $j_{-}b$        | $in_bkg\_spectra$           | <br> | <br>        | •••   | <br> | <br> | <br>    | 62 |
| 8.10  | $j_bin_lc$            |                             | <br> | <br>        | •••   | <br> | <br> | <br>••• | 62 |
|       | 8.10.1 $j_{-}b$       | $in\_evts\_lc$              | <br> | <br>        | •••   | <br> | <br> | <br>••• | 63 |
|       | $8.10.2 j_{-}b$       | $in_rate_lc$                | <br> | <br>        | •••   | <br> | <br> | <br>••• | 63 |
|       | 8.10.3 $jb$           | $in_bkg_lc$                 | <br> | <br>        | • • • | <br> | <br> | <br>    | 64 |
| 8.11  | Observation           | group level analysis        | <br> | <br>        |       | <br> | <br> | <br>    | 64 |
|       | 8.11.1 <i>j_i</i>     | $ma\_mosaic \ldots \ldots$  | <br> | <br>        | •••   | <br> | <br> | <br>    | 64 |
|       | 8.11.2 src            | $e\_collect$                | <br> | <br>        | •••   | <br> | <br> | <br>    | 66 |
|       | 8.11.3 j_iı           | ma_src_locator              | <br> | <br>        | •••   | <br> | <br> | <br>••• | 66 |
| Know  | n Issues and l        | Limitations                 | <br> | <br>        | •••   | <br> | <br> | <br>    | 70 |
| Low I | Level Processi        | ng Data Products .          | <br> | <br>        |       | <br> | <br> | <br>    | 72 |

9 A

|              | A.1     | Raw Data                                                       | 2 |
|--------------|---------|----------------------------------------------------------------|---|
|              |         | A.1.1 Full Imaging mode                                        | 2 |
|              |         | A.1.2 Restricted Imaging mode                                  | 3 |
|              |         | A.1.3 Spectral/Timing mode                                     | 3 |
|              |         | A.1.4 Timing mode                                              | 3 |
|              |         | A.1.5 Spectral mode                                            | 4 |
|              |         | A.1.6 Prepared Data                                            | 4 |
|              |         | A.1.7 Revolution File Data                                     | 4 |
| В            | Instru  | ament Characteristics Data used in Scientific Analysis       7 | 4 |
|              | B.1     | The IMOD group                                                 | 4 |
|              | B.2     | The BPL group                                                  | 6 |
|              | B.3     | Energy Binning: ADC to PI                                      | 7 |
|              | B.4     | Detector positions                                             | 1 |
|              | B.5     | Detector Response Matrix                                       | 1 |
| $\mathbf{C}$ | Science | ce Data Products                                               | 2 |
|              | C.1     | $j\_correction$                                                | 2 |
|              |         | C.1.1 $j_{cor_{gain}}$                                         | 2 |
|              |         | C.1.2 $j_{cor_position}$                                       | 2 |
|              | C.2     | $j_{-g}ti$                                                     | 3 |
|              | C.3     | $j_{dead_time}$                                                | 3 |
|              | C.4     | <i>j_cat_extract</i>                                           | 4 |
|              | C.5     | $j\_image\_bin$                                                | 4 |
|              | C.6     | $j_{imaging}$                                                  | 4 |
|              |         | C.6.1 $j_{ima_iros}$                                           | 4 |
|              |         | C.6.2 $q_{identify\_srcs}$                                     | 5 |
|              | C.7     | $j\_src\_extract\_spectra$                                     | 5 |
|              | C.8     | j_src_extract_lc                                               | 6 |
|              |         | C.8.1 $j\_src\_lc$                                             | 7 |
|              | C.9     | <i>j_bin_spectra</i>                                           | 7 |
|              |         | C.9.1 $j\_bin\_evts\_spectra$                                  | 7 |
|              |         | C.9.2 $j\_bin\_bkg\_spectra$                                   | 7 |
|              | C.10    | <i>j_bin_lc</i>                                                | 8 |
|              | C.11    | Observation group level analysis                               | 9 |

|   | C.11.1          | j_ima_mosaic                   | 89 |
|---|-----------------|--------------------------------|----|
|   | C.11.2          | src_collect                    | 89 |
| D | jemx_science_ar | nalysis parameters description | 91 |

## List of Figures

| 1  | JEM-X effective area with the mask taken into account.            | 3  |
|----|-------------------------------------------------------------------|----|
| 2  | Overall design of JEM-X and functional diagram of one unit        | 4  |
| 3  | Off axis response of JEM-X below 50 keV                           | 5  |
| 4  | Collimator layout.                                                | 5  |
| 5  | JEM-X coded mask pattern.                                         | 6  |
| 6  | The position resolution in the detector as a function of energy.  | 10 |
| 7  | Empty field background spectrum                                   | 11 |
| 8  | Predicted $3\sigma$ source detection limit                        | 12 |
| 9  | Decomposition of the <i>jemx_science_analysis</i> script          | 14 |
| 10 | GUI                                                               | 21 |
| 11 | jmx2_sky_ima.fits file                                            | 23 |
| 12 | Single ScW image                                                  | 23 |
| 13 | PIF-cleaned image                                                 | 25 |
| 14 | jmx2_obs_res.fits file                                            | 26 |
| 15 | Mosaic image                                                      | 27 |
| 16 | Mosaic image in AIToff-Hammer projection                          | 28 |
| 17 | jmx2_src_loc.fits file                                            | 29 |
| 18 | Crab spectrum                                                     | 32 |
| 19 | Spectrum of 4U 1722-30                                            | 34 |
| 20 | Spectrum of 4U 1722-30 from mosaic                                | 36 |
| 21 | Crab lightcurve, first energy band.                               | 38 |
| 22 | Detailed decomposition of the <i>jemx_science_analysis</i> script | 48 |
| 23 | A shadowgram with a strong on-axis source                         | 54 |
| 24 | The distribution of values in an RSTI image.                      | 59 |
| 25 | Simplified version of the vignetting array.                       | 61 |
| 26 | FRSS calibration spectra.                                         | 78 |

## List of Tables

| 1  | JEM-X parameters and performance.                                                                                                                                                              | 2  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2  | Characteristics of the JEM-X Telemetry Packet Formats.                                                                                                                                         | 7  |
| 3  | Energy boundaries of the PI channels                                                                                                                                                           | 8  |
| 4  | Overview of the JEM-X Scientific Analysis Levels.                                                                                                                                              | 13 |
| 5  | Standard energy binning.                                                                                                                                                                       | 31 |
| 6  | JEM-X imod files instance number                                                                                                                                                               | 46 |
| 7  | $j_{cor}gain$ parameters included into the main script.                                                                                                                                        | 49 |
| 8  | gti_create parameters included into the main script                                                                                                                                            | 51 |
| 9  | gti_attitude parameters included into the main script                                                                                                                                          | 51 |
| 10 | gti_data_gaps parameters included into the main script                                                                                                                                         | 51 |
| 11 | gti_import parameters included into the main script.                                                                                                                                           | 51 |
| 12 | $gti_merge$ parameters included into the main script                                                                                                                                           | 52 |
| 13 | $j_{-}cat_{-}extract$ parameters included into the main script                                                                                                                                 | 53 |
| 14 | $j_iimage_bin$ parameters included into the main script $\ldots \ldots \ldots$ | 54 |
| 15 | Parameters specific to the IMA level                                                                                                                                                           | 55 |
| 16 | $q_{-identify_{-}srcs}$ parameters included into the main script                                                                                                                               | 59 |
| 17 | $j\_src\_lc$ parameters included into the main script $\ldots \ldots \ldots$   | 60 |
| 18 | <i>j_bin_evts_spectra</i> specific to the BIN_S level                                                                                                                                          | 61 |
| 19 | <i>j_bin_evts_spectra</i> specific to the BIN_S level                                                                                                                                          | 62 |
| 20 | $j_bin_bkg_spectra$ specific to the BIN_S level                                                                                                                                                | 62 |
| 21 | $j_bin_evts_lc$ specific to the BIN_T level $\ldots \ldots \ldots$             | 63 |
| 22 | $j_bin_rate_lc$ parameters specific to the BIN_T level                                                                                                                                         | 63 |
| 23 | $j_ima_mosaic$ parameters                                                                                                                                                                      | 65 |
| 24 | $src\_collect$ parameters specific to the IMA2 level $\ldots \ldots \ldots$    | 66 |
| 25 | $j_ima\_src\_locator$ parameters                                                                                                                                                               | 67 |
| 26 | List of JEM–X RAW, PRP and COR Data Structures                                                                                                                                                 | 72 |
| 27 | Content of JMXi-FULL-RAW Data Structure.                                                                                                                                                       | 73 |
| 28 | Content of JMXi-REST-RAW Data Structure.                                                                                                                                                       | 73 |
| 29 | Content of JMXi-RATE-RAW Data Structure.                                                                                                                                                       | 73 |
| 30 | Content of JMXi-SPTI-RAW Data Structure.                                                                                                                                                       | 73 |
| 31 | Content of JMXi-TIME-RAW Data Structure.                                                                                                                                                       | 73 |
| 32 | Content of JMXi-SPEC-RAW Data Structure.                                                                                                                                                       | 74 |

| 33 | Content of JMXi-IMOD-GRP Group.                                                                                                                                                               | 74 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 34 | Content of JMXi-BPLGRP Group.                                                                                                                                                                 | 76 |
| 35 | Content of JMXi-***B-Mod Data Structures                                                                                                                                                      | 77 |
| 36 | Content of JMXi-GAIN-CAL-IDX Index.                                                                                                                                                           | 79 |
| 37 | Content of JMXi-GAIN-CAL Index.                                                                                                                                                               | 80 |
| 38 | Content of JEMXi-*BDS-MOD Data Structures.                                                                                                                                                    | 80 |
| 39 | Content of JMXi-RMFRSP Data Structure.                                                                                                                                                        | 81 |
| 40 | Content of JMXi-AXISARF Data Structure.                                                                                                                                                       | 81 |
| 41 | Possible corrected event STATUS values                                                                                                                                                        | 82 |
| 42 | Content of JMXi-***-COR Data Structures                                                                                                                                                       | 83 |
| 43 | Content of JMXi-GNRL-GTI Data Structure.                                                                                                                                                      | 83 |
| 44 | Content of JMXi-DEAD-SCP Data Structure.                                                                                                                                                      | 84 |
| 45 | Content of JMXi-SCAL-BKG and JMXi-SCAL-DBG Data Structures.                                                                                                                                   | 84 |
| 46 | Content of JMXi-EVTS-SHD-IDX                                                                                                                                                                  | 84 |
| 47 | Content of JMXi-SRCL-RES Data Structure.                                                                                                                                                      | 84 |
| 48 | Content of JMXi-SRCL-BSP Data Structure.                                                                                                                                                      | 86 |
| 49 | Content of JMXi-SRCL-SPE Data Structure.                                                                                                                                                      | 86 |
| 50 | Content of JMXi-SRCL-ARF Data Structure.                                                                                                                                                      | 86 |
| 51 | Content of JMXi-SRCLCR Data Structure.                                                                                                                                                        | 87 |
| 52 | Content of JMXi-FULL-DSP, JMXi-REST-DSP and JMXi-SPTI-DSP Data Structures                                                                                                                     | 87 |
| 53 | List of the $j_bin_bkg_spectra$ output Data Structures $\ldots \ldots \ldots$ | 88 |
| 54 | Content of JMXi-DETE-LCR-IDX Data Structure.                                                                                                                                                  | 88 |
| 55 | Content of JMXi-DETE-LCR Data Structure.                                                                                                                                                      | 88 |
| 56 | Content of JMXi-DETE-FLC-IDX Data Structure.                                                                                                                                                  | 88 |
| 57 | Content of JMXi-DETE-FLC-IDX Data Structure.                                                                                                                                                  | 88 |
| 58 | Content of JMXi-MOSA-IMA-IDX                                                                                                                                                                  | 89 |
| 59 | Content of JMXi-OBSRES Data Structure.                                                                                                                                                        | 89 |
| 60 | <i>jemx_science_analysis</i> parameters description                                                                                                                                           | 91 |

## Acronyms and Abbreviations

| ADC   | Analog to Digital Converter         | MSP   | Microstrip Plate                          |
|-------|-------------------------------------|-------|-------------------------------------------|
| CR    | Cosmic Rays                         | OBT   | On Board Time                             |
| DFEE  | Digital Front End Electronics       | OCL   | Off-line Calibration                      |
| DPE   | Data Processing Electronics         | OG    | Observation Group                         |
| DSRI  | Danish Space Research Institute     | PCFOV | Partially Coded Field of View             |
| DXB   | Diffuse X-ray Background            | PHA   | Pulse Height Amplitude                    |
| FRSS  | Fixed Radiation Source System       | PI    | Pulse Invariant                           |
| FCFOV | Fully Coded Field of View           | RATE  | Countrate Format                          |
| FOV   | Field of View                       | REST  | Restricted Imaging Format                 |
| FULL  | Full Imaging Format                 | S/C   | Spacecraft                                |
| GTI   | Good Time Interval                  | SPTI  | Spectral-Timing Format                    |
| IC    | Instrument Characteristics          | SPEC  | Spectral Format                           |
| IJD   | Integral Julian Day                 | SDAST | Science Data Analysis Team                |
| ISOC  | Integral Science Operations Centre  | TBW   | To be written                             |
| ISDC  | Integral Science Data Center        | TIME  | Timing Format                             |
| ISSW  | Instrument Specific Software        | TM    | Telemetry                                 |
| JEM-X | Joint European Monitor for X-rays   | ZRFOV | Zero Response Field of View               |
| HURA  | Hexagonal Uniformly Redundant Array | SPAG  | Spatial gain variation (of the microstrip |
| IROS  | Iterative Removal of Sources        |       | plate)                                    |

### **Glossary of Terms**

- *ISDC system:* the complete ground software system devoted to the processing of the *INTEGRAL* data and running at the ISDC. It includes contributions from the *ISDC* and from the *INTEGRAL* instrument teams.
- Science Window (ScW): For the operations, ISDC defines atomic bits of INTEGRAL operations as either a pointing or a slew, and calls them ScWs. A set of data produced during a ScW is a basic piece of INTEGRAL data in the ISDC system.
- Observation: Any group of ScW used in the data analysis. The observation defined from ISOC in relation with the proposal is only one example of possible *ISDC observations*. Other combinations of Science Windows, *i.e.*, of observations, are used for example for the Quick-Look Analysis, or for Off-Line Scientific Analysis.
- *Pointing:* Period during which the spacecraft axis pointing direction remains stable. Because of the *INTEGRAL* dithering strategy, the nominal pointing duration is of order of 20 minutes.
- *Slew:* Period during which the spacecraft is manoeuvred from one stable position to another, i.e., from one pointing to another.
- *Shadowgram:* The pattern of detected events on the microstrip plate produced when particles and xrays pass through the coded mask and hit the plate
- *Sky image:* Image of the sky above the telescope produced when a shadowgram integrated over a given period of time is deconvolved by the image construction software
- *Mosaic:* A sky image produced by merging two or more separate sky images so as to cover a greater area of sky, or to enhance the signal from a particular area of the sky.

## Introduction

This document, 'JEM-X Analysis User Manual', has been written to help you with the JEM-X specific part of the *INTEGRAL* Data Analysis.

You will find some text in blue along this manual: it is used to notify a difference with respect to the previous version of this document, or the introduction of a new section (in this case only the title is marked in blue).

A more general overview on the INTEGRAL Data Analysis can be found in the 'Introduction to the INTE-GRAL Data Analysis' [1]. For the JEM-X analysis scientific validation report see [3]

The 'JEM-X Analysis User Manual' is divided into two major parts:

- Description of the Instrument This part, based to some extent on the JEM-X User Manual [2], introduces the *INTEGRAL* on-board X-Ray Monitor (JEM-X).
- Description of the Data Analysis This part starts with an overview describing the different steps of the analysis. Then, in the Cookbook Section, several examples of analysis and their results and the description of the parameters are given. Finally, the used algorithms are described. A list of the known limitations of the current release is also provided.

In the Appendix of this document you find the description of the Raw and Prepared Data and also the description of the Scientific Products.

### Part I

## **Instrument Definition**

### **1** Scientific Performance Summary

The Joint European Monitor for X-rays (JEM-X) on-board INTEGRAL fulfills three roles:

- It provides complementary data at lower energies for the studies of the gamma-ray sources observed by the two main instruments, IBIS and SPI. Flux changes or spectral variability at the lower energies may provide important elements for the interpretation of the gamma-ray data. In addition, JEM-X has a higher spatial resolution than the gamma-ray instruments. This aids with the identification of sources in crowded fields.
- During the recurrent scans along the galactic plane JEM-X provides rapid alerts for the emergence of new transients or unusual activity in known sources. These sources may be unobservable by the other instruments on INTEGRAL.
- Finally, JEM-X may deliver independent scientific results concerning sources with soft spectra, serendipitously detected in the field of view (FOV) during the normal observations.

JEM-X operates simultaneously with the main gamma-ray instruments IBIS and SPI. It is based on the same principle as the two gamma-ray instruments on INTEGRAL: sky imaging using a coded aperture mask. The performance of JEM-X is summarized in Table 1.

| Energy range                         | $3-35 \mathrm{keV}$                                                                     |
|--------------------------------------|-----------------------------------------------------------------------------------------|
| Energy resolution <sup>†</sup>       | $\Delta E/E = 0.40 \times \left[ (1/E \text{ keV}) + (1/120 \text{ keV}) \right]^{1/2}$ |
| Field of view $(diameter)^{\dagger}$ | 4.8° Fully illuminated                                                                  |
|                                      | $7.5^{\circ}$ Half response                                                             |
|                                      | $13.2^{\circ}$ Zero response                                                            |
| Angular resolution (FWHM)            | 3'                                                                                      |
| Relative point source location error | 1' (90% confidence radius for a $5\sigma$ isolated source)                              |
| Continuum sensitivity                | $1.2 \times 10^{-4} \text{ ph cm}^{-2} \text{s}^{-1} \text{keV}^{-1} @ 6 \text{ keV}$   |
| for a single JEM-X unit              | $1.0 \times 10^{-4} \text{ ph cm}^{-2} \text{s}^{-1} \text{keV}^{-1} @ 30 \text{ keV}$  |
| (isolated source on-axis)            | for a 3 $\sigma$ cont. detection in 10 <sup>5</sup> s, $\Delta E = 0.5E$                |
| Narrow-line sensitivity              | $1.6 \times 10^{-4} \text{ ph cm}^{-2} \text{s}^{-1} @ 6 \text{ keV}$                   |
| (isolated source on-axis)            | $1.3 \times 10^{-4} \text{ ph cm}^{-2} \text{s}^{-1} @ 20 \text{ keV}$                  |
|                                      | for a $3\sigma$ line detection in $10^5$ s                                              |
| Timing resolution                    | $122 \ \mu s$ (relative timing)                                                         |
|                                      | $\sim 1 \text{ ms} \text{ (absolute timing)}$                                           |

|  | Table 1 | I: JEM-X | a parameters | and | performance. |
|--|---------|----------|--------------|-----|--------------|
|--|---------|----------|--------------|-----|--------------|

<sup>†</sup> The energy resolution is slowly changing (degrading) over time.

‡ At the half response angle the sensitivity is reduced by a factor 2 relative to the on-axis sensitivity.

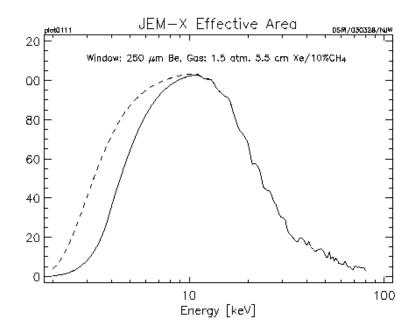



Figure 1: JEM-X effective area with the mask taken into account. The dashed line shows the effective area before the high voltage reduction and the full curve shows efficiency when taking into account the effect of the electronic low-signal cutoff (approximately).

### 2 Instrument Description

#### 2.1 The Overall Design

JEM-X consists of two identical coded-aperture mask telescopes co-aligned with the other instruments on *INTEGRAL*. The photon detection system consists of high-pressure imaging Microstrip Gas Chambers (MSGC) located at a distance of 3.4 m from each coded mask. Figure 2 shows a schematic diagram of one JEM-X unit. A single JEM-X unit comprises 3 major subsystems: the detector, the associated electronics and the coded mask.

The two JEM-X units have been used alternatively in the past, and are currently operated simultaneously. The decision to use only one instrument at a time was made about three months after launch when a gradual loss in sensitivity had been observed in both JEM-X units, due to the erosion of the microstrip anodes inside the detector. By lowering the operating voltage, and thereby the gain of the detectors, the anode damage rate has now been reduced to a level where the survival time of the detectors seems to be assured for a further five year period. Only 6 anodes have been lost on JEM-X1 in all of 2006. Another 7 anode strips have been lost on JEM-X1 in the first 8 months of 2007. For the complete, updated list of dead anodes see http://www.spacecenter.dk/~oxborrow/sdast/InstrConfig/JC.BadAnodes.txt

#### 2.2 The Detector

Each JEM-X detector is a microstrip gas chamber with a sensitive geometric area of  $500 \text{ cm}^2$  per unit. The gas inside the steel pan-shaped detector vessel is a mixture of xenon (90%) and methane (10%) at 1.5 bar pressure. The incoming photons are absorbed in the xenon gas by photo-electric absorption and the resulting ionization cloud is then amplified in an avalanche of ionizations by the strong electric field near the microstrip anodes. Significant electric charge is picked up on the strip as an electric impulse. The position of the electron avalanche in the direction perpendicular to the strip pattern is measured from the centroid of

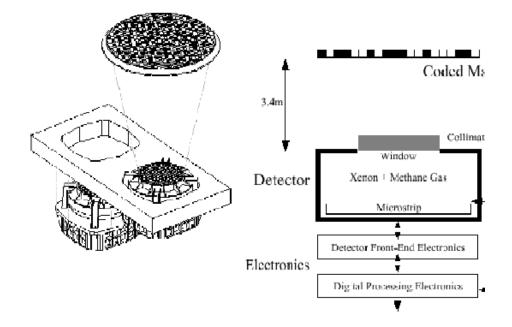



Figure 2: Left:Overall design of JEM-X, showing the two units, with only one of the two coded masks. Right: functional diagram of one unit.

the avalanche charge. The orthogonal coordinate of an event is obtained from a set of electrodes deposited on the rear surface of the microstrip plate (MSP).

The X-ray window of the detector is composed of a thin (250  $\mu$ m) beryllium foil which is impermeable to the detector gas but allows a good transmission of low-energy X-rays (see dashed curve in Fig. 1). the Be window imposes an absolute lower limit of  $\simeq 3$  keV on the energy of X-rays coming into the detector, and hence it is meaningless to try to push the data analysis below this limit.

A collimator structure with square-shaped cells is placed on top of the detector entrance window. It gives support to the window against the internal pressure and, at the same time, limits and defines the field of view of the detector. The collimator is important for reducing the count rate caused by the cosmic diffuse X-ray background. However, the presence of the collimator also means that sources near the edge of the field of view are attenuated with respect to on-axis sources (see Fig.3). The materials for the collimator (molybdenum, copper, aluminium) have been selected in order to minimize the detector background caused by K fluorescence. Four radioactive sources are embedded in each detector collimator in order to calibrate the energy response of the JEM-X detectors in orbit. For JEM-X1 two <sup>55</sup>Fe and two <sup>109</sup>Cd sources were used. For JEM-X2 all four radioactive sources are <sup>109</sup>Cd. Each source illuminates a well defined spot on the microstrip plate. <sup>109</sup>Cd emits 22 keV and 88 keV photons. <sup>55</sup>Fe produces one unresolved doublet at 6 keV. The gain of the detector gas is monitored continuously with the help of these sources. Figure 4 shows the collimator layout and the locations of the calibration sources. There is one calibration source for each anode segment on the MSP. The 29.6 keV photons produced by Xe fluorescence can be detected all over the MSP and are used for offline monitoring of the gain correction by the software, and also to produce instrument model tables of the spatial gain (SPAG) variation across the detector plate. For the complete archive of these offline analyses see: http://www.spacecenter.dk/~oxborrow/sdast/GAINresults.html.

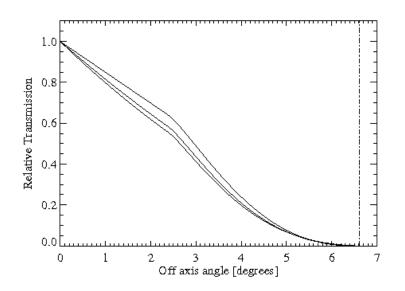



Figure 3: Off axis response of JEM-X below 50 keV where the collimator walls are opaque. The thick line shows the average transmission through the collimator considering all azimuth angles. The square pattern of the collimator introduces an azimuthal dependence of the throughput with a minimum and a maximum as indicated by the two thin curves (no response at ZRFOV indicated by dash-dot line).

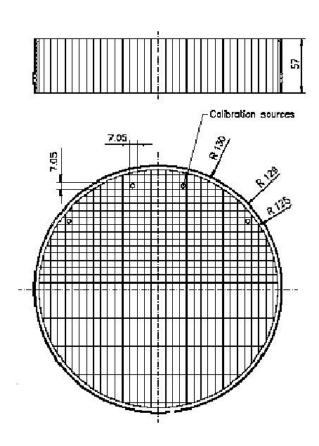



Figure 4: Collimator layout. In this diagram the 4 calibration sources are situated on the upper side. The dimensions are in mm, i.e. collimator length = 57 mm, radius = 130 mm

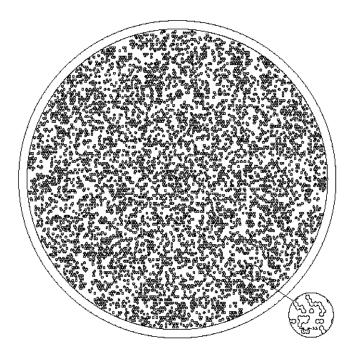



Figure 5: Illustration of the JEM-X coded mask pattern layout without the mechanical interface. The diameter of the coded mask is 535 mm. The mask has a transparency of 25%.

#### 2.3 Coded Mask

The mask is based on a Hexagonal Uniformly Redundant Array (HURA). For JEM-X a pattern composed of 22501 elements with only 25% open area has been chosen. The 25% transparency mask actually achieves better sensitivity than a 50% mask, particularly in complex fields with many sources, or in fields where weak sources should be studied in the presence of a strong source. A mask with lower transparency also has the advantage of reducing the number of events to be transmitted, while at the same time increasing the information content of the remaining events. Considering the telemetry allocation to JEM-X, this means an improved overall performance for the instrument, particularly for observations in the plane of the Galaxy. The mask height above the detector ( 3.4 m) and the mask element dimension (3.3 mm) define together the angular resolution of the instrument, in this case 3'. Figure 5 illustrates the JEM-X coded mask pattern.

### **3** Instrument Operations

#### 3.1 Telemetry Formats and Data Compression

JEM-X data can be transmitted in several different telemetry formats which vary in their information content for position, energy or time and the required bandwidth per event. In addition, a "grey filter" mechanism exists eliminating a fraction of the incoming events in a randomized way. The possible transmission settings range from 32/32 to 1/32 of the incoming events. These mechanisms allow the instrument to cope with sources of very different brightness despite its limited telemetry allocation.

For formats with poor time resolution (REST, SPEC) countrate data packets are also transmitted to provide some data for timing analysis. However countrate data is not an independent data format.

For a given observation a primary and a secondary telemetry format are defined and they can be identical. If the observed data rate is too high to be transmitted completely, first the grey filtering will be increased to reduce the number of processed events. Should this not be sufficient the instrument will autonomously switch to the secondary telemetry format, continuing to adapt the grey filter as necessary. For decreasing input rates the instrument will reduce the filtering and possibly switch back to the primary format. All these changes are driven by the filling status of an on-board buffer, the mechanism includes a certain hysteresis in order to avoid rapid switching between formats.

The characteristics of primary and secondary telemetry formats are listed in Table 2. The default primary format is Full Imaging and the default secondary format is Restricted Imaging. Note that in the Spectral Timing format the actual spectral resolution will be slightly lower than that of the Full Imaging mode due to spatial gain variations in the detector. It is recommended, however, that the full imaging format is used both as primary and secondary format.

|                    |        | Detector Image | Timing               | Spectral   | Events     |
|--------------------|--------|----------------|----------------------|------------|------------|
| Format Name        |        | Resolution     | Resolution           | Resolution | per        |
|                    |        | (pixels)       |                      | (channels) | packet     |
| Full Imaging       | (FULL) | $256 \ge 256$  | $1/8192s = 122\mu s$ | 256        | $\leq 105$ |
| Restricted Imaging | (REST) | 256 x 256      | $\leq 32 \text{ s}$  | 8          | $\leq 320$ |
| Countrate          | ()     | None           | 1/8  s = 125  ms     | 1          | n/a        |
| Spectral Timing    | (SPTI) | None           | $1/8192s = 122\mu s$ | 256        | $\leq 210$ |
| Timing             | (TIME) | None           | $1/8192s = 122\mu s$ | None       | $\leq 550$ |
| Spectrum           | (SPEC) | None           | 1/8s = 125 ms        | 64         | n/a        |

 Table 2: Characteristics of the JEM-X Telemetry Packet Formats.

#### 3.2 Energy Binning

#### 3.2.1 PHA Binning

The energy values of the events provided in the telemetry are given as a bin number from 0 to 255. These are non-linear groupings of the original 4096 bins of the on-board Analog to Digital Converter (ADC). While the ADC channels are highly linear, the PHA bins are designed to be logarithmic so that the energy resolution of the bins parallels that of the detector. The actual grouping of the ADC channels into PHA telemetry bins is determined by a lookup table used by the Data Processing Electronics (DPE) to pack the telemetry. After the high voltage reductions this table has been updated to match the changed ADC signal strengths.

See also Appendix B.3 for more details.

#### 3.2.2 PI Binning

The PI bin limits in keV have been defined so that the entire energy range (nominally 3–100 keV) is covered and the binsize is a more or less constant fraction of the detector resolution. The PI binning table for the Full Imaging mode with the highest number of bins (256) is shown in Table 3. See Appendix B.3 for more details.

| PI | $\mathrm{E}_{\mathrm{min}}$ | E <sub>max</sub> | PI  | $\mathrm{E}_{\mathrm{min}}$ | E <sub>max</sub> | PI  | $\mathrm{E}_{\mathrm{min}}$ | E <sub>max</sub> |
|----|-----------------------------|------------------|-----|-----------------------------|------------------|-----|-----------------------------|------------------|
| 0  | 0.00                        | 0.06             | 86  | 6.24                        | 6.32             | 171 | 17.90                       | 18.16            |
| 1  | 0.06                        | 0.12             | 87  | 6.32                        | 6.40             | 172 | 18.16                       | 18.42            |
| 2  | 0.12                        | 0.18             | 88  | 6.40                        | 6.48             | 173 | 18.42                       | 18.68            |
| 3  | 0.18                        | 0.24             | 89  | 6.48                        | 6.56             | 174 | 18.68                       | 18.94            |
| 4  | 0.24                        | 0.30             | 90  | 6.56                        | 6.64             | 175 | 18.94                       | 19.20            |
| 5  | 0.30                        | 0.36             | 91  | 6.64                        | 6.72             | 176 | 19.20                       | 19.46            |
| 6  | 0.36                        | 0.42             | 92  | 6.72                        | 6.80             | 177 | 19.46                       | 19.72            |
| 7  | 0.42                        | 0.48             | 93  | 6.80                        | 6.88             | 178 | 19.72                       | 19.98            |
| 8  | 0.48                        | 0.54             | 94  | 6.88                        | 6.96             | 179 | 19.98                       | 20.24            |
| 9  | 0.54                        | 0.60             | 95  | 6.96                        | 7.04             | 180 | 20.24                       | 20.50            |
| 10 | 0.60                        | 0.66             | 96  | 7.04                        | 7.12             | 181 | 20.50                       | 20.76            |
| 11 | 0.66                        | 0.72             | 97  | 7.12                        | 7.20             | 182 | 20.76                       | 21.02            |
| 12 | 0.72                        | 0.78             | 98  | 7.20                        | 7.28             | 183 | 21.02                       | 21.28            |
| 13 | 0.78                        | 0.84             | 99  | 7.28                        | 7.36             | 184 | 21.28                       | 21.54            |
| 14 | 0.84                        | 0.90             | 100 | 7.36                        | 7.44             | 185 | 21.54                       | 21.80            |
| 15 | 0.90                        | 0.96             | 101 | 7.44                        | 7.52             | 186 | 21.80                       | 22.06            |
| 16 | 0.96                        | 1.02             | 102 | 7.52                        | 7.60             | 187 | 22.06                       | 22.32            |
| 17 | 1.02                        | 1.08             | 103 | 7.60                        | 7.68             | 188 | 22.32                       | 22.58            |
| 18 | 1.08                        | 1.14             | 104 | 7.68                        | 7.76             | 189 | 22.58                       | 22.84            |
| 19 | 1.14                        | 1.20             | 105 | 7.76                        | 7.84             | 190 | 22.84                       | 23.10            |
| 20 | 1.20                        | 1.26             | 106 | 7.84                        | 7.92             | 191 | 23.10                       | 23.36            |
| 21 | 1.26                        | 1.32             | 107 | 7.92                        | 8.00             | 192 | 23.36                       | 23.72            |
| 22 | 1.32                        | 1.38             | 108 | 8.00                        | 8.08             | 193 | 23.72                       | 24.08            |
| 23 | 1.38                        | 1.44             | 109 | 8.08                        | 8.16             | 194 | 24.08                       | 24.44            |
| 24 | 1.44                        | 1.50             | 110 | 8.16                        | 8.24             | 195 | 24.44                       | 24.80            |
| 25 | 1.50                        | 1.56             | 111 | 8.24                        | 8.32             | 196 | 24.80                       | 25.16            |
| 26 | 1.56                        | 1.62             | 112 | 8.32                        | 8.42             | 197 | 25.16                       | 25.52            |
| 27 | 1.62                        | 1.68             | 113 | 8.42                        | 8.52             | 198 | 25.52                       | 25.88            |
| 28 | 1.68                        | 1.74             | 114 | 8.52                        | 8.62             | 199 | 25.88                       | 26.24            |
| 29 | 1.74                        | 1.80             | 115 | 8.62                        | 8.72             | 200 | 26.24                       | 26.60            |
| 30 | 1.80                        | 1.86             | 116 | 8.72                        | 8.82             | 201 | 26.60                       | 26.96            |
| 31 | 1.86                        | 1.92             | 117 | 8.82                        | 8.92             | 202 | 26.96                       | 27.32            |
| 32 | 1.92                        | 2.00             | 118 | 8.92                        | 9.02             | 203 | 27.32                       | 27.68            |
| 33 | 2.00                        | 2.08             | 119 | 9.02                        | 9.12             | 204 | 27.68                       | 28.04            |
| 34 | 2.08                        | 2.16             | 120 | 9.12                        | 9.22             | 205 | 28.04                       | 28.40            |
| 35 | 2.16                        | 2.24             | 121 | 9.22                        | 9.32             | 206 | 28.40                       | 28.76            |
| 36 | 2.24                        | 2.32             | 122 | 9.32                        | 9.42             | 207 | 28.76                       | 29.12            |
| 37 | 2.32                        | 2.40             | 123 | 9.42                        | 9.52             | 208 | 29.12                       | 29.48            |
| 38 | 2.40                        | 2.48             | 124 | 9.52                        | 9.62             | 209 | 29.48                       | 29.84            |
| 39 | 2.48                        | 2.56             | 125 | 9.62                        | 9.72             | 210 | 29.84                       | 30.20            |
| 40 | 2.56                        | 2.64             | 126 | 9.72                        | 9.82             | 211 | 30.20                       | 30.56            |
| 41 | 2.64                        | 2.72             | 127 | 9.82                        | 9.92             | 212 | 30.56                       | 30.92            |
| 42 | 2.72                        | 2.80             | 128 | 9.92                        | 10.08            | 213 | 30.92                       | 31.28            |
| 43 | 2.80                        | 2.88             | 129 | 10.08                       | 10.24            | 214 | 31.28                       | 31.64            |
| 44 | 2.88                        | 2.96             | 130 | 10.24                       | 10.40            | 215 | 31.64                       | 32.00            |
| 45 | 2.96                        | 3.04             | 131 | 10.40                       | 10.56            | 216 | 32.00                       | 32.36            |
| 46 | 3.04                        | 3.12             | 132 | 10.56                       | 10.72            | 217 | 32.36                       | 32.72            |
|    |                             |                  |     |                             |                  |     |                             |                  |

Table 3: Energy boundaries of the PI channels

| 47 | 3.12 | 3.20 | 133 | 10.72 | 10.88 | 218 | 32.72 | 33.08 |
|----|------|------|-----|-------|-------|-----|-------|-------|
| 48 | 3.20 | 3.28 | 134 | 10.88 | 11.04 | 219 | 33.08 | 33.44 |
| 49 | 3.28 | 3.36 | 135 | 11.04 | 11.20 | 220 | 33.44 | 33.80 |
| 50 | 3.36 | 3.44 | 136 | 11.20 | 11.36 | 221 | 33.80 | 34.16 |
| 51 | 3.44 | 3.52 | 137 | 11.36 | 11.52 | 222 | 34.16 | 34.52 |
| 52 | 3.52 | 3.60 | 138 | 11.52 | 11.68 | 223 | 34.52 | 34.88 |
| 53 | 3.60 | 3.68 | 139 | 11.68 | 11.84 | 224 | 34.88 | 36.16 |
| 54 | 3.68 | 3.76 | 140 | 11.84 | 12.00 | 225 | 36.16 | 37.44 |
| 55 | 3.76 | 3.84 | 141 | 12.00 | 12.16 | 226 | 37.44 | 38.72 |
| 56 | 3.84 | 3.92 | 142 | 12.16 | 12.32 | 227 | 38.72 | 40.00 |
| 57 | 3.92 | 4.00 | 143 | 12.32 | 12.48 | 228 | 40.00 | 41.28 |
| 58 | 4.00 | 4.08 | 144 | 12.48 | 12.64 | 229 | 41.28 | 42.56 |
| 59 | 4.08 | 4.16 | 145 | 12.64 | 12.80 | 230 | 42.56 | 43.84 |
| 60 | 4.16 | 4.24 | 146 | 12.80 | 12.96 | 231 | 43.84 | 45.12 |
| 61 | 4.24 | 4.32 | 147 | 12.96 | 13.12 | 232 | 45.12 | 46.40 |
| 62 | 4.32 | 4.40 | 148 | 13.12 | 13.28 | 233 | 46.40 | 47.68 |
| 63 | 4.40 | 4.48 | 149 | 13.28 | 13.44 | 234 | 47.68 | 48.96 |
| 64 | 4.48 | 4.56 | 150 | 13.44 | 13.60 | 235 | 48.96 | 50.24 |
| 65 | 4.56 | 4.64 | 151 | 13.60 | 13.76 | 236 | 50.24 | 51.52 |
| 66 | 4.64 | 4.72 | 152 | 13.76 | 13.92 | 237 | 51.52 | 52.80 |
| 67 | 4.72 | 4.80 | 153 | 13.92 | 14.08 | 238 | 52.80 | 54.08 |
| 68 | 4.80 | 4.88 | 154 | 14.08 | 14.24 | 239 | 54.08 | 55.36 |
| 69 | 4.88 | 4.96 | 155 | 14.24 | 14.40 | 240 | 55.36 | 56.64 |
| 70 | 4.96 | 5.04 | 156 | 14.40 | 14.56 | 241 | 56.64 | 57.92 |
| 71 | 5.04 | 5.12 | 157 | 14.56 | 14.72 | 242 | 57.92 | 59.20 |
| 72 | 5.12 | 5.20 | 158 | 14.72 | 14.88 | 243 | 59.20 | 60.48 |
| 73 | 5.20 | 5.28 | 159 | 14.88 | 15.04 | 244 | 60.48 | 61.76 |
| 74 | 5.28 | 5.36 | 160 | 15.04 | 15.30 | 245 | 61.76 | 63.04 |
| 75 | 5.36 | 5.44 | 161 | 15.30 | 15.56 | 246 | 63.04 | 64.32 |
| 76 | 5.44 | 5.52 | 162 | 15.56 | 15.82 | 247 | 64.32 | 65.60 |
| 77 | 5.52 | 5.60 | 163 | 15.82 | 16.08 | 248 | 65.60 | 66.88 |
| 78 | 5.60 | 5.68 | 164 | 16.08 | 16.34 | 249 | 66.88 | 68.16 |
| 79 | 5.68 | 5.76 | 165 | 16.34 | 16.60 | 250 | 68.16 | 69.44 |
| 80 | 5.76 | 5.84 | 166 | 16.60 | 16.86 | 251 | 69.44 | 70.72 |
| 81 | 5.84 | 5.92 | 167 | 16.86 | 17.12 | 252 | 70.72 | 72.00 |
| 82 | 5.92 | 6.00 | 168 | 17.12 | 17.38 | 253 | 72.00 | 73.28 |
| 83 | 6.00 | 6.08 | 169 | 17.38 | 17.64 | 254 | 73.28 | 74.56 |
| 84 | 6.08 | 6.16 | 170 | 17.64 | 17.90 | 255 | 74.56 | 81.92 |
| 85 | 6.16 | 6.24 |     |       |       |     |       |       |

The complete table can also be found in JMXi-IMOD-GRP structure, in extension JMXi-FBDS-MOD. The Xe instrumental background line which is used to verify the gain calibration of the instrument should appear in the channel 209.

### 4 Performance of the Instrument

The properties described in the following have been derived in part from pre-flight calibration measurements and modeling and in part from calibration observations in orbit. JEM-X has had major changes of its configuration since launch, the most important being a reduction of the high voltages reducing the gas gain from 1500 down to 500 for JEM-X 1 and to 750 for JEM-X 2. These changes also affect the instrument performance.

#### 4.1 Position Resolution

The position determination accuracy depends on the number of source and background counts and on the position in the Field of View (FOV). Off-axis the collimator blocks some of the source photons and beyond the fully coded FOV (FCFOV) the coding is incomplete.

Figure 6 shows the position resolution for a source on axis as function of energy. The cause of the degradation below 10 keV is the signal-to-noise ratio of the front-end electronics. The energy dependence of the position resolution above 10 keV is determined by the increase of the primary photoelectron range with energy. The position resolution is slightly degraded compared to the ground calibrations.

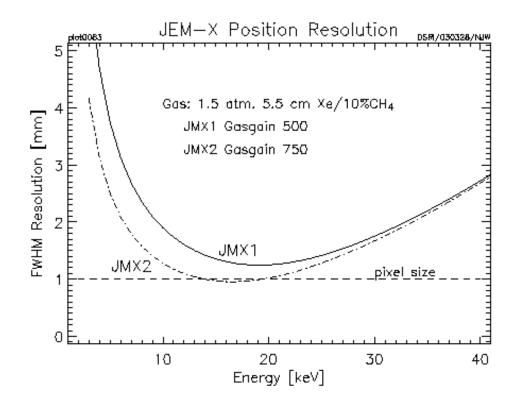
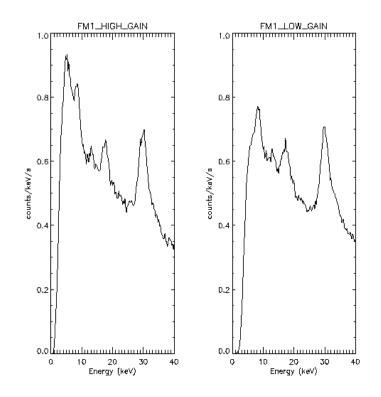



Figure 6: The calculated position resolution in the JEM-X 1 and JEM-X 2 detectors as a function of energy valid after 2002-11-09 (JEM-X 1) and after 2002-11-12 (JEM-X 2).

#### 4.2 Energy Resolution

The energy resolution has been determined in the laboratory as


$$\Delta E/E(FWHM) = 0.40 \cdot \sqrt{1/E[\text{keV}] + 1/120 \text{ keV}}.$$

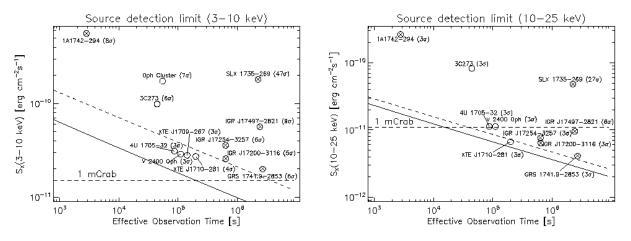
This value has not been significantly affected by the gain change and the corresponding slight rise in importance of the electronic noise.

#### 4.3 Background

The local radiation environment is mainly produced by two components: the diffuse X-ray background (DXB) and cosmic rays (CR). Most of the latter are rejected on-board with a combination of pulse height, pulse shape, anti-coincidence and "footprint" evaluation techniques. These techniques allow a particle rejection efficiency of >99.9% with carefully tuned selection parameters. This high rate of background rejection has ensured that there has been no significant increase in background events in the telemetry despite the steady increase in the CR rate at Solar minimum.

Figure 7 shows an actual background spectrum which is composed of the diffuse X-ray background, instrumental background due to the interactions with cosmic rays and three strong instrumental lines due to the cooper and molybdenum in the collimator (8.04 keV and 17.4 keV) and Xe fluorescence from the detector gas at 29.6 keV.




#### Figure 7:

Empty field background spectrum measured with the nominal detector gain of 1500 (left) compared to the background spectrum with the reduced gain of 500 (right). After these measurements the rejection criteria have been adjusted (2003-02-25), but no blank fields have been observed for a longer period since then. The background has increased with about 10-15% at higher energies and with 20-30% below 10 keV after the adjustment.

#### 4.4 Sensitivity

The sensitivity achieved for source detection and flux determination also depends on the performance of the deconvolution software. Figure 8 shows the  $3\sigma$  detection limit as a function of observation time.

The changes in gas gain and corresponding changes in signal patterns led to a large fraction of events being classified as background and rejected on-board until new selection criteria could be determined and uploaded (2003-03-25, revolution 45). Even with the new optimized selection criteria the detector sensitivity below 5 keV is reduced.



#### Figure 8:

Source detection capabilities in the 3 to 10 keV (resp. 10 to 25 keV) band as function of effective accumulated observation (exposure) time in JEM-X mosaic images corrected for dead time, grey filter and vignetting effects. The thick solid curve is obtained from simulations where an isolated source must be detected at  $3\sigma$  in the deconvolved image. The dashed line represents the case where there are additional sources in the field of view giving a background corresponding to a total of 1 Crab. Examples of actual observations are given: the source 3C 273 and the other empty circles are instances of isolated sources, while the crossed circles represent sources observed in the crowded Galactic Centre region. The  $\sigma$ -values given in parentheses are obtained from a measure of the highest source pixel in significance mosaic maps with default pixel size (1.5 arcmin).

### Part II

## Data Analysis

### 5 Overview

The scientific analysis performed by the user on the data collected by the three high-energy instruments on-board *INTEGRAL* has a lot of commonality, despite the various differences in detail. In a certain step, for example, events are corrected for instrumental fingerprints, in another one events are binned into detector maps, and in yet another step sky images are derived by image deconvolution.

In order to make this more transparent for scientists working with data from several instruments, so-called *Analysis Levels* were identified by the ISDC and designated with unique labels. The order of these levels, the detailed processing and the details of the outputs may differ across instruments, but in general, a given level will mean similar tasks and similar outputs for JEM-X, IBIS, and SPI. The list of all levels is given in the Introduction to the *INTEGRAL* Data Analysis [1]. For JEM-X the following levels have been defined:

| Tasks                        | Description                                            |
|------------------------------|--------------------------------------------------------|
| COR                          | Data Correction                                        |
| GTI                          | Good Time definition and handling                      |
| DEAD                         | Dead Time derivation                                   |
| $\mathbf{CAT}_{-}\mathbf{I}$ | Catalogue source selection for Imaging                 |
| BIN_I                        | Event binning for Imaging                              |
| IMA                          | Image reconstruction, source flux determination        |
| SPE                          | Source spectra and response extraction (for XSPEC)     |
| LCR                          | Source light curves extraction                         |
| BIN_S                        | Event binning for Spectral Analysis                    |
| BIN_T                        | Event binning for Timing Analysis                      |
| IMA2                         | Creation of mosaic images and summary on sources found |

| Table 4: Overview of the JEM-X Scientific Analysis Levels. |
|------------------------------------------------------------|
|------------------------------------------------------------|

Figure 9 shows the Scientific Analysis overview. The details of each step are briefly discussed below.

#### COR – Data Correction (j\_correction)

Corrects science data for instrumental fingerprints such as energy and position corrections, as well as flagging events of dubious quality. Look up tables of pre-flight corrections are used, as well as tables of in-flight calibrations determined by offline analysis of science data, calibration spectra, and instrumental background lines. Dynamic determination of known transient problems (e.g. hotspots on the detector) is also done in this level. The majority of calibration tables are stored in the Instrument Model group, JMXi-IMOD-GRP (with i = 1 and 2 for JEM-X1 and JEM-X2, respectively), but the offline gain history Instrument Characteristics tables are stored separately in JMXi-GAIN-OCL data structures. The latter are also located automatically by the OSA software just like the IMOD group.

#### $GTI - Good Time Handling (j_gti)$

Good Time Intervals (GTIs) are used in the analysis to select only those data taken while the detector was considered to work correctly. The corresponding data structures consist simply of a list of start and stop times of those intervals considered "good". Usually, these intervals are generated based on the following data:

1. Housekeeping parameters which are compared with pre-set limits.

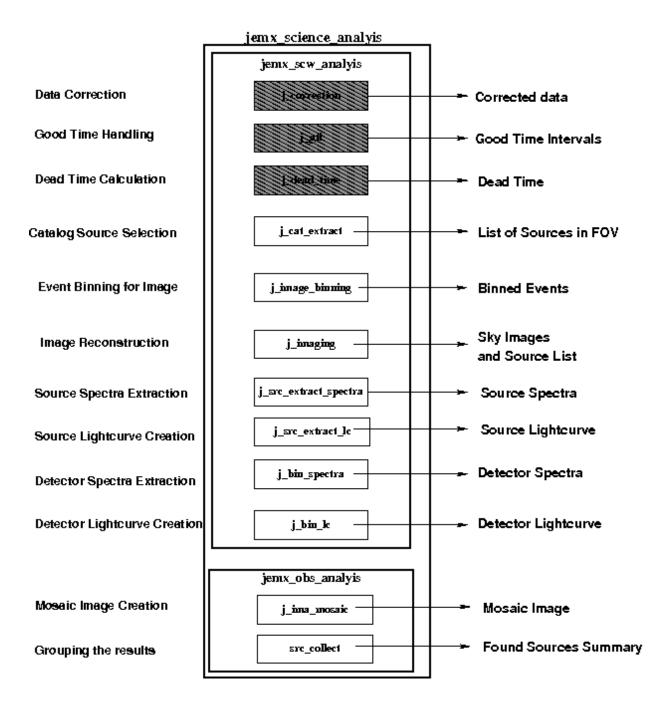



Figure 9: Decomposition of the *jemx\_science\_analysis* script.

- 2. The satellite stability as recorded in the attitude data.
- 3. Gaps (lost packets) in the telemetry flow.

In addition, this step excludes by default periods when the instrument configuration is not adapted to the production of scientific works, either because of hardware problems or because of intentional modifications of the instrument configurations for the purpose of testing and calibrations. These periods are marked as "bad time intervals" in the Instrument Characteristics data.

#### DEAD – Dead and Live Times (j\_dead\_time)

For each 8 second onboard polling cycle, this level calculates the dead time during which photons are lost due to finite read in time of registers, event processing time, grey filter losses, buffer losses and double event triggers.

#### CAT\_I – Catalogue Source Selection (j\_cat\_extract)

Selects a list of known sources from the given catalogue. Creates a source data structure, containing source location and expected flux values.

#### BIN\_I – Event Binning for Imaging (j\_image\_binning)

Defines the energy bins to be used for imaging, selects good events within the GTI, and creates shadowgrams. Works only on FULL and REST data (see Table 2).

#### IMA – Image Reconstruction (j\_imaging)

Generates sky images and performs search for significant sources. If sources are detected, a new source data structure is created, including part of the information from the input catalogue concerning the identified sources. Works only on FULL and REST data (see Table 2)

#### SPE – Spectra Extraction (j\_src\_extract\_spectra)

Extracts spectra for individual sources found at IMA step, and produces the specific response files (ARFs) needed for spectral fitting with the XSPEC package. Works only on FULL data (see Table 2).

#### LCR – Extract Source Light Curves (j\_src\_extract\_lc)

Produces light curves for individual sources. Works only on FULL data (see Table 2)

#### BIN\_S – Event Binning for Spectral Analysis (j\_bin\_spectra)

Creates detector spectra, i.e spectra of all events recorded within the GTI are corrected for greyfilter, ontime and deadtime. A series of spectra resolved in time or phase over a given period can be produced.

#### BIN\_T – Creates Detector Light Curves (j\_bin\_lc)

Creates binned lightcurves for entire detector area.

#### IMA2 – Mosaic Image Creation (j\_ima\_mosaic, src\_collect)

Generates mosaic sky images and creates the list of all found sources. Works only on FULL and REST data (see Table  $\frac{2}{2}$ )

Since October 18, 2004, all public *INTEGRAL* data are available including already the correction step, and also the instrumental GTI and deadtime handling have been already performed at the science window level. This allows to speed up the scientific analysis of JEM-X data as there is no need to redo the COR, GTI and DEAD levels, but you can directly start JEM-X analysis from the CAT\_I level.

It is however recommended that users run the science analysis from the COR level onwards, especially after downloading new software, and IMOD/IC files. This will undoubtedly give better results than the archived data. Archived data necessarily fossilize our understanding of the instruments as it was at the time of the archival processing and can therefore be several years out of date since our knowledge of the instruments, and the software to process the data is still improving.

### 6 Cookbook for JEM-X analysis

The Cookbook describes how to use the OSA JEM-X software. It covers the following steps:

- Setting up the analysis data
- Setting the environment
- Launching the analysis
- Interpreting the results

We assume that you have already successfully installed the ISDC Off-line Scientific Analysis (OSA) Software version 10.0 (The directory in which OSA is installed is referred later as the ISDC\_ENV directory). If this is not the case, look at the "Installation Guide for the *INTEGRAL* Off-line Scientific Analysis" [4] for detailed help.

#### 6.1 Setting Up the Analysis Data

In order to set up a proper environment, you first have to create an analysis directory (e.g jmx\_data\_rep) and "cd" into it:

mkdir jmx\_data\_rep
cd jmx\_data\_rep
setenv REP\_BASE\_PROD \$PWD

This working directory will be referred to as the REP\_BASE\_PROD directory in the following. All the data required in your analysis should then be available from this "top" directory, and they should be organized as follows:

- scw/ : data produced by the instruments (e.g., event tables) cut and stored by ScWs
- **aux**/ : auxiliary data provided by the ground segment (e.g., time correlations)
- **cat**/ : ISDC reference catalogue
- ic/ : Instrument Characteristics (IC), such as calibration data and instrument responses
- idx/ : set of indices used by the software to select appropriate IC data

The JEM-X example presented below is based on observations of the Crab from Revolution 102.

Part of the required data may already be available on your system<sup>1</sup>. In that case, you can either copy these data to the relevant working directory, or better, create soft links as follows

```
ln -s directory_of_ic_files_installation__/ic ic
```

ln -s directory\_of\_idx\_files\_installation\_\_/idx idx

```
ln -s directory_of_cat_installation__/cat cat
```

ln -s directory\_of\_local\_archive\_\_/scw scw

```
ln -s directory_of_local_archive__/aux aux
```

<sup>&</sup>lt;sup>1</sup>For installation of the Instrument Characteristics files (OSA\_IC package) and the Reference Catalogues (OSA\_CAT package), follow the instructions given in "Installation Guide for the *INTEGRAL* Data Analysis System" [4].

JEM-X calibration files are continuously produced by the JEM-X Team for new revolutions. To be sure to have all the latest calibrations, update your copy of the Instrument Characteristics each time you want to analyse new data, using the rsync command:

rsync -Lzrtv isdcarc.unige.ch::arc/FTP/arc\_distr/ic\_tree/prod/ directory\_of\_ic\_files\_installation\_\_

This command will download the Instrument Characteristics files (ic and idx directories) to your directory\_of\_ic\_files\_installation\_\_.

Then, just create a file 'jmx.lst' containing the 2 lines:

```
scw/0102/010200210010.001/swg.fits[1]
scw/0102/010200220010.001/swg.fits[1]
```

which is the list of ScWs you want to analyse (technically, we call them DOLs - *Data Object Locators* -, i.e. a specified extension in a given FITS file).  $^2$ 

This file name 'jmx.lst' will be used later as an argument for the og\_create program (see section 6.5).

Alternatively, if you do not have any of the above data on your local system, or if you do not have a local archive with the scw/ and the aux/ branch available, follow the next section instructions to download data from the ISDC WWW site.

#### 6.2 Downloading Your Data

To retrieve the required analysis data from the archive, go to the following URL: http://www.isdc.unige.ch/integral/archive.

You will reach the W3Browse web page which will allow you to build a list of Science Windows (ScWs) needed to create your observation group for OSA.

- Type the name of the object (Crab) in the 'Object Name Or Coordinates:' field.
- Click on the 'More Options' button at the top or at the bottom of the web page.
- Deselect the 'All' checkbox at the top of the Catalog table, and select the 'SCW Science Window Data' one.
- Press the 'Specify Additional Parameters' button at the bottom of the web page.
- Deselect the 'View All' checkbox (press twice on it) at the top of the Query table.
- Select 'scw\_id' and put the value '0102\*' (without the quotes) to specify all Scws from Revolution 102.
- Select 'scw\_type' and put the value 'pointing' (without the quotes), or simply 'po\*' to get only pointings.
- Press the 'Start Search' button at the bottom of the web page. At this point, you should be at the Query Results page with all the Scws available for revolution 102.
- Sort the 'Scw\_id' column by clicking on the left arrow below the column name. You can then select the two Scws we are interested in, i.e 010200210010 and 010200220010.

Press the 'Save SCW list for the creation of Observation Groups' button at the bottom of that table and save the file with the name 'jmx.lst'. The file name 'jmx.lst' will be used later as an argument for the og\_create program (see section 6.5). In this file, you should find the 2 lines:

 $<sup>^{2}</sup>$ When an analysis script asks you to specify the DOL, you should specify the path of the corresponding FITS file, and the corresponding name or number of the data structure in square brackets (do not forget that numbering starts with 0!). See more details in the Introduction to the INTEGRAL Data Analysis [1].

scw/0102/010200210010.001/swg.fits[1]
scw/0102/010200220010.001/swg.fits[1]

You should then download the data pressing the '**Request** data products for selected rows' button. In the 'Public Data Distribution Form', provide your e-mail address and press the 'Submit Request' button. You will be e-mailed the required script to get your data and the instructions for the settings of the IC files and the reference catalogue. Just follow these instructions.

#### 6.3 Setting the environment

Before you run any OSA software, you must also set your environment correctly.

The commands below apply to the csh family of shells (i.e csh and tcsh) and should be adapted for other families of shells<sup>3</sup>.

In all cases, you have to set the REP\_BASE\_PROD variable to the location where you perform your analysis (e.g the directory jmx\_data\_rep). Thus, type:

```
setenv REP_BASE_PROD $PWD
```

Then, if not already set by default by your system administrator, you should set some environment variables and type:

```
setenv ISDC_ENV directory_of_OSA_sw_installation
setenv ISDC_REF_CAT $REP_BASE_PROD/cat/hec/gnrl_refr_cat_0031.fits\[1]
source $ISDC_ENV/bin/isdc_init_env.csh
```

The idea is to:

- set ISDC\_ENV to the location where OSA is installed
- set ISDC\_REF\_CAT to the DOL of the ISDC Reference Catalog
- run the OSA set-up script (isdc\_init\_env.csh) which initializes further environment variables relative to ISDC\_ENV.

Besides these mandatory settings, there are two optional environment variables (COMMONLOGFILE and COMMONSCRIPT) which are useful.

• By default, the software logs messages to the screen (STDOUT). To have also these messages in a file (i.e common\_log.txt) and make the output chattier<sup>4</sup>, use the command:

```
setenv COMMONLOGFILE +common_log.txt
```

• When you launch the analysis, the Graphical User Interface (GUI) is launched. As your level of expertise with the software increases, you may wish to not have the GUIs pop up when you launch your analysis. In this case, the variable COMMONSCRIPT must be defined:

```
setenv COMMONSCRIPT 1
```

 $<sup>^{3}</sup>$ If the setenv command fails with a message like: 'setenv: command not found' or 'setenv: not found', then you are probably using the sh family. In that case, please replace the command 'setenv my\_variable my\_value' by the following command sequence 'my\_variable=my\_value; export my\_variable'

In the same manner, replace the command 'source my\_script' by the following command '. my\_script' (the '.' is not a typo!).

<sup>&</sup>lt;sup>4</sup>For example, the exit status of the program will now appear.

When the GUI is disabled, parameters can be specified on the command line typing 'name = value' after the script name.

To revert and have the GUI again, unset the variable:

unsetenv COMMONSCRIPT

#### 6.4 Useful to know!

In this section we report some general information that might be useful when running OSA software. Most of these information can be found also in the IBIS Cookbook<sup>5</sup>.

- How do I get some help with the executables? All the available help files are stored under \$ISDC\_ENV/help. To visualize a help file interactively type tool\_name --h once your environment is set (i.e. the command *which tool\_name* should return the path to it).
- Where are the parameter files and how can I modify them?

All the available executables for the analysis of *INTEGRAL* data are under \$ISDC\_ENV/bin. The corresponding parameter files are stored under \$ISDC\_ENV/pfiles/\*.par. The first time you launch a script, the system will copy the specific tool.par from \$ISDC\_ENV/pfiles/ to a local directory (/user\_name/pfiles/). The parameter file in the local directory is the one used for the analysis and is the one you can modify. If this parameter file is missing (e.g. you have deleted it), the system will just re-copy it from \$ISDC\_ENV/pfiles/ as soon as you launch the script again. The system knows what to copy from where thanks to the \$PFILES environment variable that is also used in FTOOLS (http://heasarc.gsfc.nasa.gov/ftools/). Each parameter is characterized with a letter that specifies the parameter type, i.e:

"q" (query) parameters are always asked to the user

"h" (hidden) parameters are not asked to the user and the indicated value is used

"I" (learned) parameters are updated with the user's value during the use of the program.

The GUI is a fast and easy way to change the parameters, see also the explanation at the end of this section.

• What are groups and indices?

The ISDC software makes extensive use of groups and indices. While it is not necessary to grasp all the details of these concepts, a basic understanding is certainly quite useful.

As implied by their names, "groups" make possible the grouping of data that are logically connected. Groups can be seen as a kind of data container, not completely unlike standard directories. At ISDC, we create separate groups for each pointing, in which we store the many different data types produced by INTEGRAL and its instruments. The user then only has to care about one file, the group, many tens of files being silently included. Several pointings (the "Science Window Groups") can be arbitrarily grouped into bigger groups (the "Observation Group") to select data very efficiently according to the user's needs.

Indices are a special kind of groups, which differ only in the fact that all the the data sets they contain are similar and that the indices know the properties of the data sets they contain. Indices are a kind of poor man's database. For example, an imaging program creates several images of different types (flux map, significance map,...) in different energy bands. These images are stored in an index, in which the image type and energy band information is replicated. ISDC software is then able to select very efficiently the needed images. The user can also make use of the indices; just by looking at the index (for instance using "fv"), the user can identify immediately the content of each image.

• Why do I need "[1]" after a FITS file name?

A FITS file can have many extensions and sometimes it is necessary to specify as input to a given parameter not the file name alone (file.fits) but the extension too (file.fits[1], or file.fits[2],

<sup>&</sup>lt;sup>5</sup>The IBIS Cookbook is available at the URL http://www.isdc.unige.ch/integral/analysis

etc). The file name with a specified data structure (extension) is called DOL (Data Object Locator). When you modify the parameter file itself (see above) or use the GUI, the extension will be correctly interpreted in the file.fits[1] case. On the command line though, the normal CFITSIO and FTOOLS rules apply, i.e. you have to specify it as one of the following file.fits\[1] file.fits+1 "file.fits[1]". Note that if no extension is specified explicitly then the first one ([1]) will be used by default.

• What are the general functionalities of the GUI?

When you launch the analysis, by default the GUI is launched, providing an opportunity to set the values of all desired parameters, see Figure 10. On the right side of the panel you see the following buttons:

- Save as With the "Save As" button a file is created. This file stores all parameters as they are currently defined in the GUI as a command line script. This file is an executable one and calling it from the command line will launch the instrument analysis program with the parameters as they were defined in the GUI.
- Load With the "Load" button a previously saved file (see "Save As") can be read and the GUI will update all parameters with the values as they are defined in the loaded file.
- Reset With the "Reset" button the parameters in the GUI will be reset to the default values as they are defined in the parameter file of the instrument analysis program and stored in the \$ISDC\_ENV/pfiles directory.
- Run With "Run" button the analysis is launched.
- Quit With "Quit" button you quit the program without analysis launch.
- Help With "Help" button the help file of the main script is opened in a separate window.
- hidden With the "hidden" button you have an access to the hidden parameters with values defined by the instrumental teams. Change them with care!

The environment variable COMMONSCRIPT is used to disable/enable the GUI (see section 6.3).

#### 6.5 A Walk Through the JEM-X Analysis

After setting up the data and the environment, you are ready to call the analysis script on the Crab region observations defined above and stored in the jmx.lst file.

Firstly, create an Observation Group (see the description of the executable *og\_create* in the "Toolbox" and "Data Analysis" sections of the Introduction to the *INTEGRAL* Data Analysis [1]):

og\_create idxSwg=jmx.lst ogid=crab baseDir="./" instrument=JMX2

As a result, the directory \$REP\_BASE\_PROD/obs/crab will be created<sup>6</sup>. It contains the files og\_jmx2.fits and swg\_idx\_jmx2.fits as well as the subdirectory scw necessary for the analysis. In the latest version of og\_create, the file indicated in idxSwg is automatically interpreted as a fits file when the name includes a "+" or "[" sign.

#### 6.6 Examples of Image Creation

Now you can go to the directory created with *og\_create* and start the analysis

 $<sup>^{6}</sup>$  To create the structure for both JemX units at the same time, it is possible to call og\_create only once, with the parameter <code>instrument=JMX1,JMX2</code>.

```
cd obs/crab
jemx_science_analysis startLevel="COR" endLevel="IMA" nChanBins=-4 jemxNum=2
```

The above command launches the analysis which will run from the Correction step (startLevel="COR") up to the image creation level (endLevel="IMA"). It is important to specify that we are interested in the second of JEM-X instruments: jemxNum=2. nChanBins parameter specifies the energy binning (see section 6.7.2 for details).

At the beginning the script launches the GUI (Fig. 10) and you can check the parameter settings (the full

| 000                                                                                  | X jemx_science_analysis                 |                                                         |
|--------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|
| General<br>ogDOL:<br>jem×Num:<br>startLevel:                                         | 2 ♥<br>COR ▼ endLevel: IMA ▼            | <u>S</u> ave As<br>Load<br><u>R</u> eset<br><u>R</u> un |
|                                                                                      | -4 🗲<br>46 83 129 160<br>82 128 159 223 | Quit<br>Help<br>hidden                                  |
| Catalog Extraction<br>CAT_I_usrCat:<br>Source Lightcurve Extraction<br>LCR_timeStep: |                                         |                                                         |

Figure 10: GUI for JEM-X science analysis.

list of the parameters is given in Table 60). Only the most important parameters (shown in bold in Table 60) appear within the main panel of GUI. To access the other "hidden" parameters click on the button "hidden" on the right side of the panel.

The behaviour of the IMA step has changed between OSA 7 and OSA 8. This is because fluxes have now to be extracted using the IMA step, in order to profit from the vast improvement in the modelling of the JEM-X instruments in OSA 8. Therefore, the normal behaviour is that IMA does not produce images for the binning specified under "General Binning Tasks".

By default, *jemx\_science\_analysis* creates images in the 3 energy ranges: 3-7 keV, 7-11 keV and 11-20 keV, which corresponds to the images used for optimal source detection. While this can be changed by the user, this should not be modified in normal analyses. To generate images in arbitrary energy bands, see section 6.6.7.

In the upper frame of the front panel called "General" you can choose at which level you want to start and stop the script execution. In the Overview chapter you have seen that there are different processing levels of the analysis. You can choose to run only some of them. The default settings of the *jemx\_science\_analysis* script are

startLevel="COR" start the script at COR level,

endLevel="IMA2" stop the script at IMA2 level.

It is advisable always to start with level COR. This will allow the processing of the data using the latest knowledge of the calibration of the instrument.

If you want to skip some levels, click on the "hidden" button on the right of the GUI panel to access the whole set of *jemx\_science\_analysis* parameters. In the frame "General" you find the skipLevels parameter. However, be always careful while setting this parameter – levels often depend on the previous ones, so make sure that your selection makes sense. Another useful hidden parameter IMA\_skyImagesOut in the IMA section enables you to choose the types of images which you want to output<sup>7</sup>. The checkbox IMA\_detImagesOut enables you to output also the images in the pre-defined energy bands used by the *j\_ima\_iros* for the source search. This option is not recommended if you want to extract a spectrum from the mosaic image later.

In the middle of the GUI front panel you have a possibility to choose a "user input catalog" (the parameter CAT\_I\_usrCat). At the moment you can leave it empty (the software will use the general *INTEGRAL* source catalog for the analysis). However, for the correct extraction of spectra and lightcurves of the sources it is recommended to create a "user catalog" with the positions of the sources for which you plan to extract the spectra and/or the lightcurves. We will come back to this in the following sections (and sect. 7.5).

Once you are satisfied with the settings, save them by pressing the "Save As" button at the front panel of GUI and then press "Run" to start the data reduction.

#### 6.6.1 Results from the Image Step

After *jemx\_science\_analysis* finishes its operation, the results are stored separately for each ScW of the observation group. They are located in the subdirectories named scw/RRRRPPPPSSSF.001/ (where RRRRPPPPSSSF is the number of the ScW).

Go to one of these directories and have a look at the files

cd scw/010200210010.001/ ls

This is the output from all the processing steps done by the script.

The output image is jmx2\_sky\_ima.fits. You can check it using e.g. fv:

fv jmx2\_sky\_ima.fits

You will find that this file contains 7 extensions: the index of all images, 3 cleaned sky images (RECONSTRUCTED type), and 3 variance maps, one for each of the 3 selected energy bands (see Fig. 11).

In the file jmx2\_srcl\_res.fits you find a list of all found sources, the energy bands, and the derived flux values, and in the file jmx2\_srcl\_cat.fits the list of the sources in the input catalog. You can see that most of the catalog sources were not found, as they are too weak. When you run the lightcurve and spectra extraction steps the results would be produced for all sources listed in jmx2\_srcl\_res.fits.

Please note that with OSA10 the count rates are scaled to one  $cm^2$ , while until OSA9 the count rates were scaled to one  $dm^2$ .

There is a nice way to locate the found sources as well as the catalog sources on the sky image. To do it use the utility *cat2ds9*:

cat2ds9 jmx2\_srcl\_res.fits\[1] found.reg symbol=box color=red cat2ds9 jmx2\_srcl\_cat.fits\[1] cat.reg symbol=circle color=white

(to find out more about this program type cat2ds9 --h in the command line). With the help of the above two commands the two files found.reg and cat.reg are created. They contain the lists of all the found sources and all the catalog sources, respectively.

<sup>&</sup>lt;sup>7</sup>Several types of images may be produced: the vignetting-corrected intensity image, called RECONSTRUCTED, the variance image VARIANCE, RECTIFIED (raw intensity image), RESIDUAL (residuals left after removing all found sources) and EXPOSURE (the exposure map).

| ile   | Edit | Tools                      |                                                                                                               |           |          |              |           |       | н       | elp     |         |         |    |
|-------|------|----------------------------|---------------------------------------------------------------------------------------------------------------|-----------|----------|--------------|-----------|-------|---------|---------|---------|---------|----|
| Index |      | Extension                  | Туре                                                                                                          | Dimension |          | View         |           |       |         |         |         |         |    |
|       | 0    | Primary                    | Image                                                                                                         | 0         |          | Header       | Image     |       | le      |         |         |         |    |
|       | 1    | GROUPING                   | Binary                                                                                                        | 21 cols X | 6 rows   | Header       | Hist Plot | All   | Select  |         |         |         |    |
|       | 2    | JMX2-SKYIMA                | Image                                                                                                         | 511 X     | 511      | Headar       | Image     | Tat   | ile     |         |         |         |    |
|       | 3    | JMX2-SKYIMA<br>JMX2-SKYIMA | Image                                                                                                         | 511 X 511 |          | Header Image |           | Table |         |         |         |         |    |
|       | 4    |                            | Image                                                                                                         | 511 X     | ă1       | Header       | Image     | Tat   | le      |         |         |         |    |
|       | 5    | JMX2-SKYIMA                | Image                                                                                                         | 511 X     | 511      | Header       | Image     | Tat   | Ne      |         |         | -       |    |
|       | 6    | JMX2-SKYIMA                | Image                                                                                                         | 511 X     |          | Handor       | Impan     | Tet   |         |         |         |         | >  |
|       | 7    | JMX2-SKYIMA                | ○ ○ ○ 🕅 fv: Binary Table of jmx2_sky_ima.fits[1] in /unsaved_data/neronov/OSA8/obs/crab/scw/010200210010.001/ |           |          |              |           |       |         |         |         |         |    |
|       |      |                            | File Edit                                                                                                     | Tools     | \$       |              |           |       |         |         |         | Help    |    |
|       |      |                            |                                                                                                               |           | IMADESCR |              |           |       |         | IMACASE | CHANMIN | CHANMAX |    |
|       |      |                            | Select                                                                                                        |           |          | 32           | A         |       |         | 32A     | 1B      | 1B      |    |
|       |      |                            | 🗆 All                                                                                                         |           |          |              |           |       |         |         |         |         |    |
|       |      |                            | Invert                                                                                                        |           | Modify   |              |           |       |         | Modify  | Modify  | Modify  |    |
|       |      |                            | 1                                                                                                             | Open      | VARIANCE |              |           | IR    | IROS001 |         | 46      | 95      | ſ- |
|       |      |                            | 2                                                                                                             | Open      | RES+SRC  |              |           | IR    | 0S001   |         | 46      | 95      | 11 |
|       |      |                            | 3                                                                                                             | Open      | VARIANCE |              |           |       |         | IR0S001 |         | 134     | 11 |
|       |      |                            | 4                                                                                                             | Open      | RES*SRC  |              |           |       | IROS001 |         | 96      | 134     | 10 |
|       |      |                            | 5                                                                                                             | Open      | VARIANCE |              |           | IR    | 05001   |         | 135     | 178     |    |
|       |      |                            | 6                                                                                                             | Open      | RES+SRC  |              |           | IR    | 05001   |         | 135     | 178     | 1  |
|       |      |                            |                                                                                                               |           |          |              |           |       |         |         |         |         | 4  |
|       |      |                            | 1                                                                                                             |           |          |              |           |       |         |         |         |         |    |

Figure 11: The content of jmx2\_sky\_ima.fits file.

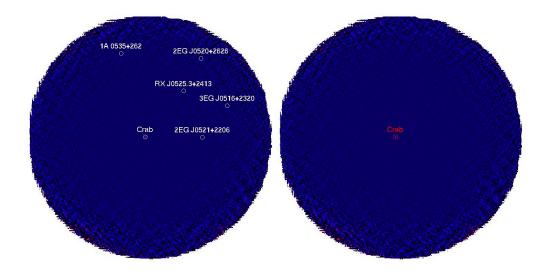



Figure 12: The image of Crab region. Catalog sources in the FOV are shown with white circles. The only found source (Crab) is shown with a red box.

With the help of *ds9* viewer you can display the sky images in any of the three energy bands. For example, to look at the 7–11 keV image which is contained in the 5th extension of the jmx2\_sky\_ima.fits file you can type

ds9 jmx2\_sky\_ima.fits\[5]

You can load the region files cat.reg and found.reg created with *cat2ds9* by using the "Region" menu of *ds9* or directly from the command line:

ds9 jmx2\_sky\_ima.fits\[5] -region cat.reg

In Fig. 12, the left panel shows the Crab region in the second energy band (7–11 keV) with the catalog sources, and the right one – the same region with the found sources (Science Window 010200210010).

#### 6.6.2 Weak Sources and Sources at the Edge of the FOV

The source acceptance is based on a positive detection in at least two energy bands. However, a strong source that only appears in a single energy band may also be accepted. Such an acceptance is based on the parameter 'IMA\_detSigSingle' (Note, however, that it is NOT a statistical sigma). The default value is 12 which prevents most of the spurious detections to be accepted. However, if the aim is to find the weak sources the value can be reduced to e.g. 10. Still lower values will probably cause too many spurious sources. The number of detector pixels that contribute to the sky image decreases towards the edge of the FOV. That implies on one hand that spurious sources are more likely to occur at the edge and on the other hand that sources located there will be less reliable as is reflected in the relative error of the flux determination.

#### 6.6.3 PIF-cleaning of images around strong sources

The image generating algorithm used by default in the JEM-X Scientific Analysis assigns equal weights to all active detector pixels. This allows to assign errors to the source fluxes with reasonable accuracy. For observations where the diffuse background is dominating the count rate this imaging technique appear as the best approach.

However, when bright sources are in the field of view and significantly increases the global count rate the situation changes. Due to the presence of the 25% open mask, the counts from a source will affect strongly at most a quarter of the detector pixels, but in those it may strongly dominate the pixel counts. Consequently, it could be advantageous to reduce the weight of pixels illuminated by a bright source when generating images intended for detection of weak sources. Since we are always operating with very few counts in the individual detector pixels the pixel counts cannot be used to determine the relevant weights, instead the weights are derived from the pixel illumination functions (PIF) used in the source fitting procedure. A new "PIF-weighted" image generation algorithm based on the above considerations have been implemented and is available in the new JEM-X Scientific Analysis package.

PIF imaging can be activated by including the string "PIF" in the IMA\_skyImagesOut string accessible from the jemx\_science\_analysis GUI as one of the "hidden" parameters.

(Example: IMA\_skyImagesOut="PIF,RECONSTRUCTED,VARIANCE". Abbreviations as e.g. "PIF,RECON,VARIA" can also be used) .

The PIF-imaging technique improves the visibility of weak sources in crowded fields like the Galactic Centre or in the neighborhood of strong sources like the Crab or GRS 1915+105 (Figure 13).

NOTE HOWEVER, THAT PIF-IMAGES SHOULD NOT BE USED WITH "mosaic\_spec"! FOR THE TIME BEING IT IS NOT RELIABLE TO EXTRACT SPECTRA WITH "mosaic\_spec" (6.7.7) FOR STRONG SOURCES (SOURCES STRONG ENOUGH TO BE DETECTED IN SINGLE SCIENCE WINDOWS) FROM PIF IMAGES - OR FROM MOSAICS BASED ON PIF IMAGES. THE FITTED FLUXES in "src\_ls\_res" SHOULD BE USED TO EXTRACT SPECTRA FOR STRONG SOURCES, THESE FLUXES ARE NOT AFFECTED BY THE PIF-IMAGING OPTION.

#### 6.6.4 The Mosaic Image

The IMA2 level produces JEM-X mosaic images by combining all the individual  $j_{ima_{iros}}$  images from the different science windows gathered in the observation group. The combined images have longer exposure time. As a consequence, weaker sources which are not visible in single ScW may appear in the mosaic images.

In what follows we consider an example of a JEM-X mosaic of the Galactic Center region for the revolution 0053 in March 2003. You can browse through the *INTEGRAL* data archive and check that within this revolution the pointings which have the Galactic Center within the JEM-X2 FOV are

scw/0053/005300410010.001/swg.fits[1]
scw/0053/005300420010.001/swg.fits[1]

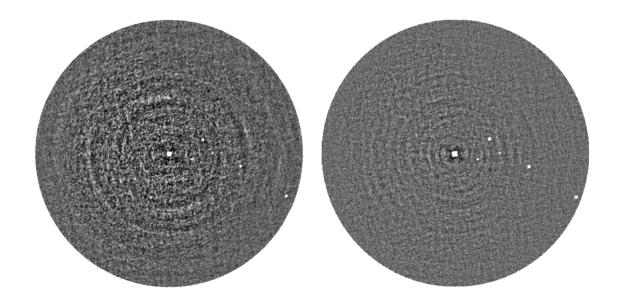



Figure 13: Left: Mosaic from conventional images centered on the strong source GRS 1915+105. Right: Mosaic from PIF images in the same region of the sky.

scw/0053/005300490010.001/swg.fits[1] scw/0053/005300510010.001/swg.fits[1] scw/0053/005300590010.001/swg.fits[1] scw/0053/005300650010.001/swg.fits[1] scw/0053/005300660010.001/swg.fits[1] scw/0053/005300660010.001/swg.fits[1] scw/0053/005300680010.001/swg.fits[1] scw/0053/005300740010.001/swg.fits[1] scw/0053/005300750010.001/swg.fits[1] scw/0053/005300760010.001/swg.fits[1] scw/0053/005300760010.001/swg.fits[1] scw/0053/005300760010.001/swg.fits[1]

Save the above list to the file mos.lst. To produce the mosaic image of these pointings you have first to create the corresponding observation group mos using the *og\_create* tool, as has been explained above, and run the *jemx\_science\_analysis* up to the IMA level.

```
cd $REP_BASE_PROD
og_create idxSwg=mos.lst ogid=mos baseDir="./" instrument=JMX2
cd obs/mos
jemx_science_analysis startLevel="COR" \
    endLevel="IMA" jemxNum=2
```

Next, to produce the mosaic from the intensity images for each energy band as obtained at the IMA level, you have to run the *jemx\_science\_analysis* script at IMA2 level only:

```
jemx_science_analysis startLevel="IMA2" endLevel="IMA2" jemxNum=2
```

Again, do not forget to specify which of the JEM-X instruments you are interested in (jemxNum=2 in our case). By default, "intensity" (RECONSTRUCTED), "variance", "significance" and "exposure" mosaic images will be produced.

The same result can be obtained calling jemx\_science\_analysis only once, from startLevel="COR" to

|        | SWID         | SOURCE_ID        |             | □ RA_OBJ              | DEC_OBJ       | ERR_RAD               |   |
|--------|--------------|------------------|-------------|-----------------------|---------------|-----------------------|---|
| Select | 12A          | 16A              | 20A         | 1E                    | 1E            | 1E                    |   |
| _ Ali  |              |                  |             | deg                   | deg           | deg                   |   |
| invert |              |                  |             |                       |               |                       |   |
| 1      | 005300410010 | J173157.4-335005 | GX 354-0    | 2.629919E+02          | -3.383345E+01 | 3.539000E-02          | T |
| 2      | 005300420010 | J173157.4-335005 | GX 354-0    | 2.62995 <b>1E+</b> 02 | -3.382460E+01 | 3.539000 <b>E</b> -02 |   |
| 3      | 005300490010 | J173157.4-335005 | GX 354-0    | 2.630023E+02          | -3.383810E+01 | 3.539000E-02          |   |
| 4      | 005300490010 | J174605.5-293055 | 1A 1742-294 | 2.665161E+02          | -2.951512E+01 | 3.539000E-02          |   |
| 5      | 005300510010 | J174605.5-293055 | 1A 1742-294 | 2.665105E+02          | -2.950262E+01 | 3.539000E-02          |   |
| 6      | 005300510010 | J174756.0-263349 | GX 3+1      | 2.669834E+02          | -2.655886E+01 | 3.539000E-02          |   |
| 7      | 005300580010 | J173157.4-335005 | GX 354-0    | 2.629987E+02          | -3.382590E+01 | 3.539000E-02          |   |
| 8      | 005300580010 | J174756.0-263349 | GX 3+1      | 2.669830E+02          | -2.657097E+01 | 3.539000E-02          |   |
| 9      | 005300590010 | J173157.4-335005 | GX 354-0    | 2.629953E+02          | -3.383641E+01 | 3.539000E-02          |   |
| 10     | 005300590010 | J174605.5-293055 | 1A 1742-294 | 2.665110E+02          | -2.951566E+01 | 3.539000E-02          |   |
| 11     | 005300650010 | J174605.5-293055 | 1A 1742-294 | 2.665311E+02          | -2.951624E+01 | 3.539000E-02          |   |
|        |              |                  |             |                       |               |                       |   |

Figure 14: The content of jmx2\_obs\_res.fits file.

endLevel="IMA2", eventually skipping the intermediate levels with the command skipLevels="LCR, SPE, BIN\_S, BIN\_T".

Apart from the mosaic images, the output of the IMA2 level contains a collection of the results from the individual science windows which is contained in the file jmx2\_obs\_res.fits. Its content is shown in Fig. 14. With the help of *cat2ds9* command you can produce a region file found.reg to locate these sources at the mosaic image:

```
cat2ds9 jmx2_obs_res.fits\[1] found.reg symbol=circle color=white
```

Note that since the same sources can be found in many ScWs you can have one and the same source repeated several times in the resulting region file.

You can look at the content of the resulting mosaic images contained in the file  $jmx2_mosa_ima.fits$  with fv and display them with ds9 exactly as you did with the images from individual ScWs (see Fig. 15 for the example of image in 7–11 keV energy band). In this figure you can see the sources found in single ScW analysis shown with white circles. One can see that two additional sources, which were not detected in the single ScWs, appear in the mosaic image (the sources shown by the green crosses).

If you are interested only in a particular region of the mosaic you can "zoom" on a given position in the sky running *jemx\_science\_analysis* with additional parameters IMA2\_RAcenter, IMA2\_DECcenter and IMA2\_diameter which will specify the position of the center and the diameter (in degrees) of the resulting mosaic image. To do so, first move the existing images<sup>8</sup>:

```
mv jmx2_mosa_ima.fits jmx2_mosa_ima_original.fits
mv jmx2_obs_res.fits jmx2_obs_res_original.fits
```

Remember that the images have to be also removed from the observation group. This can be done by the following command:

 $<sup>^8{\</sup>rm For}$  more details on how to re-run the analysis see sections 7.3



Figure 15: The mosaic image of the Galactic Center region for revolution 0053 in the 7–11 keV energy band (signifcance map).

dal\_clean og\_jmx2.fits+1

Now re-run the analysis script:

```
jemx_science_analysis startLevel="IMA2" endLevel="IMA2" jemxNum=2 \
    IMA2_diameter=5.0 IMA2_RAcenter=266.4 IMA2_DECcenter=-29.0
```

(we have chosen to center the image on the Galactic Center position here).

If you want to produce a mosaic image only for a specific energy band you can pass the minimal and maximal energies of the selected energy band to the *jemx\_science\_analysis* through the parameters IMA2\_eminSelect and IMA2\_emaxSelect. Note that the energies have to be the same as defined previously in chanLow and chanHigh.

To get the largest possible output mosaic in equatorial coordinates the parameters "radiusSelect" and "diameter" must both be set to -1. A better way, available with OSA v.10.0, is to use the Aitoff-Hammer projection (in galactic coordinates) by setting the option AITproj. The latter enables the mosaicking of large parts of the sky, such as for the Galactic Plane Scans, without distortion of the map (an example is in Fig. 16). This new feature can be activated setting the parameter IMA2\_AITproj="yes". The command should be therefore as follows:

#### jemx\_science\_analysis startLevel="IMA2" endLevel="IMA2" jemxNum=2 IMA2\_AITproj="yes"

The resulting AIToff mosaics are expected to be mapped in the Galactic plane, and are therefore oriented in galactic, rather than equatorial, coordinates. To produce a mosaic over the whole sky you will need to decrease the resolution of the image by increasing the pixel size (cdelt) at least to 0.075 degree. The computation in AIToff-Hammer projection can take approximately 10% more CPU-time; and the resulting file can have a rather large dimension (for example  $\sim 1$ G). In this case a simple solution can be to compress the file (e.g. with gzip) and to work directly with the compressed file (ds9 as well as other HEASOFT tools are able to work directly with the compressed file).

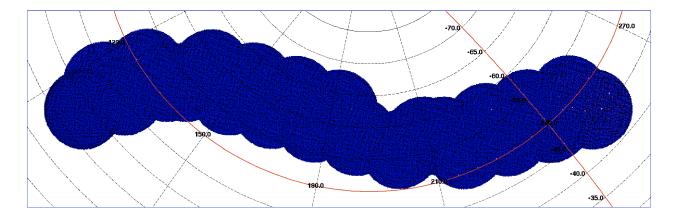



Figure 16: The mosaic image of the Galactic Plane Scan observation of revolution 399 in the 3–10 keV energy band, obtained in AIToff-Hammer projection.

#### 6.6.5 Combining JEMX-1 and JEMX-2 mosaic images

 $j\_ima\_mosaic$  can combine JEM-X mosaics, provided that they have been obtained in the same energy bands, for the same sky area and in the same projection. As for the simple mosaic image the user may specify the coordinates of the center of the image (RAcenter and DECcenter parameters), as well as its size and resolution (diameter and cdelt parameters<sup>9</sup>), when creating the mosaics. Any mix, however, of JEMX-1 and JEMX-2 mosaics is allowed.

As an example, let us create a mosaic image of the Galactic Center region, which combines the JEMX-2 mosaic (see previous sub-section) with the JEMX-1.

To combine mosaics, these must be attached in a group, so the first step is to create an empty group:

dal\_create obj\_name=jemx\_mosaics.fits template=""

This uses the default template, which is a standard group. Next, we need to attach the mosaics:

dal\_attach jemx\_mosaics.fits obs1/jmx1\_mosa\_ima.fits\
 obs2/jmx1\_mosa\_ima.fits obs3/jmx2\_mosa\_ima.fits ""

The final "" is necessary to signal to *dal\_attach* that there are no more data structures to attach. Up to five data structures can be attached with a single *dal\_attach* commands. Additional extensions can be added by issuing another *dal\_attach* command.

The combination of the mosaic is then very easily performed using the command:

j\_ima\_mosaic inObsGrp=jemx\_mosaics.fits outfile=combined\_mosaic.fits moscomb=y radiusSelect=-1

Combined JEMX-1 and JEMX-2 mosaics have the same structure as JEMX-1 ones, with EXTNAME="JMX1-MOSA-IMA".

#### 6.6.6 Finding Sources in the Mosaic Image

 $j_{ima\_src\_locator}$  is a tool to locate point sources in an image. Since OSA-7 it is included in the OSA distribution but is not part of the pipeline. This tool can be used to search for the gaussian excesses in the mosaic image (but not to identify the detected sources at the moment).

 $<sup>^9 {\</sup>rm For}$  details on j\_ima\_mosaic parameters see sections 8.11.1 and Appendix D

| File Edit       | Tools              |                            |                 |               |                |                 | He     |
|-----------------|--------------------|----------------------------|-----------------|---------------|----------------|-----------------|--------|
| Select          | □ SOURCE_ID<br>16A | DAY_ID<br>1D               | D NAME<br>20A   | □ CLASS<br>1I | □ RA_OBJ<br>1E | □ DEC_OBJ<br>1E |        |
| □ Ali<br>Invert | Modify             | d<br>Modify                | Modify          | Modify        | deg<br>Modify  | deg<br>Modify   |        |
| 1               | J174756.0-263349   | 0.00000000000 <b>E+</b> 00 | GX 3+1          | 32768         | 2.669720E+02   | -2.657941E+01   | T      |
| 2               | J173157.4-335005   | 0.00000000000E+00          | GX 354-0        | 32768         | 2.630087E+02   | -3.382130E+01   |        |
| 3               | J174605.5-293055   | 0.00000000000E+00          | 1A 1742-294     | 32768         | 2.665219E+02   | -2.951853E+01   |        |
| 4               | J174725.9-295958   | 0.00000000000 <b>E+</b> 00 | SLX 1744-299    | 32768         | 2.668544E+02   | -3.002150E+01   |        |
| 5               | J175045.5-311732   | 0.00000000000E+00          | GRS 1747-312    | 32768         | 2.676936E+02   | -3.127836E+01   |        |
| 6               | J172733.2-304807   | 0.00000000000 <b>E+</b> 00 | 4U 1722-30      | 32768         | 2.618982E+02   | -3.080776E+01   |        |
| 7               | J174354.7-294443   | 0.00000000000E+00          | 1E 1740.7-2942  | 32768         | 2.659680E+02   | -2.975105E+01   |        |
| 8               | UNKNOWN            | 0.00000000000E+00          | NEW SOURCE      | 32768         | 2.677207E+02   | -2.632796E+01   |        |
| 9               | J180659.8-292430   | 0.00000000000 <b>E+</b> 00 | XTE J1807-294   | 32768         | 2.717210E+02   | -2.941278E+01   |        |
| 10              | UNKNOWN            | 0.00000000000E+00          | NEW SOURCE      | 32768         | 2.713777E+02   | -2.792276E+01   |        |
| 11              | UNKNOWN            | 0.00000000000 <b>E+</b> 00 | NEW SOURCE      | 32768         | 2.722466E+02   | -2.750113E+01   |        |
| 12              | J175425.4-261953   | 0.00000000000E+00          | IGR J17544-2619 | 32768         | 2.685951E+02   | -2.634444E+01   |        |
|                 |                    |                            |                 |               |                |                 |        |
| 11              |                    |                            |                 |               |                |                 | $\geq$ |

Figure 17: The content of the jmx2\_sloc\_res.fits file.

As an example, let us find all the significant excesses in the 7-11 keV mosaic image of the Galactic Center region. We assume that in the mosaic image jmx2\_mosa\_ima.fits the intensity map is in the extension 2 and the significance is in the extension 4 (which is the case if the default value of IMA\_skyImagesOut parameter is used). The command

```
j_ima_src_locator inDOL=jmx2_mosa_ima.fits\[2] \
    sigDOL=jmx2_mosa_ima.fits\[4] outFile=jmx2_sloc_res
```

produces the list of the detected sources jmx2\_sloc\_res.fits. In this file all the significant sources in the mosaic image are listed. However, they are not identified with the known sources. To do the source identification, you can use the *q\_identify\_srcs* script:

```
q_identify_srcs srcl_cat_dol="$ISDC_REF_CAT"\
    srcl_res_dol=jmx2_sloc_res.fits instrument=5
```

(use instrument=4 for JEMX-1 and instrument=5 for JEMX-2). As a result, the list of sources in the file jmx2\_sloc\_res.fits looks like it is shown in Fig. 17.

When inspecting the result the user might want to get rid of (too many) spurious sources or include more sources that seem to be present. To achieve the latter the parameter 'maxNumSrcs' must have an adequate value and the 'detsigMin' parameter might be lowered.

Analogously 'detsigMin' can be increased to avoid false sources and there is some help in the log file to find a reasonable value. Giving a negative 'detsigMin' will cause  $j_ima\_src\_locator$  to apply a limit of the first found histogram value exceeding one plus the absolute value of the given 'detsigMin'.

The JEM-X coded mask has an almost non-cyclic pattern, which ensures imaging artifacts (ghost sources) are particularly rare. Nevertheless in some peculiar cases, a bright source inside the FOV might cause the presence of ghosts in the mosaic. These artifacts appear at 8.32 degrees from the bright source. To verify that a 'New Source' in the sloc\_res file is not instead a ghost, a simple test consists in checking whether there are bright sources at 8.3 deg from it in the FOV<sup>10</sup>.

 $<sup>^{10}</sup>$  If you encounter a doubtful case, you can contact the help desk at http://www.isdc.unige.ch/integral/support/helpdesk

## 6.6.7 Making images in arbitrary energy bands

IMA can use the general energy binning parameters nChanBins, chanLow and chanHigh to generate images (note however that these parameters always determine the energy binning in the spectral extraction step, SPE). To use these parameters at the IMA step, click on the "hidden" button and choose the "IMA" tab. Put the IMA\_detImagesOut to No and IMA\_userImagesOut to Yes. If you run the IMA step with such parameters settings, jmx*i*.sky\_ima.fits will contain sky images for all bins specified by "General Binning Parameters". The mosaic image produced at the IMA2 level will also use these energy bins.

# 6.7 Source Spectra Extraction

Two spectral extraction algorithms can be used to extract the spectrum of a JEM-X source: the "standard" spectral extraction carried out at the SPE level (discussed in section 6.7.1), and the spectral extraction from mosaic images (discussed in section 6.7.7). Both of them originate from the imaging step.

WARNING: with OSA10, the count rates are scaled to one  $cm^2$ , while until OSA9, the count rate was scaled to one  $dm^2$ .

#### 6.7.1 Spectral Extraction at SPE level

The "standard" spectral extraction procedure is carried out at the SPE level of the  $jemx\_science\_analysis$  script by re-formatting the source fluxes found at the IMA step. The file  $jmx2\_src1\_res.fits$  serves as input for the spectral extraction in each ScW. It is important to note, however, that  $j\_ima\_iros$  will always find a little bit different source positions in different ScWs. The deviation of the found source position from the true one may lead to an error in determination of the source spectrum. To avoid this difficulty it is recommended to create a "user catalog" with the names and positions of the sources for which you want to extract the spectra<sup>11</sup>.

For example, in the considered case, the source of interest is the Crab and one can just copy the corresponding line from the general reference catalog:

```
fcopy "${ISDC_REF_CAT}[NAME=='Crab']" user_cat.fits
```

In the new user\_cat.fits file you have to change the FLAG column to 1: in this case *jemx\_science\_analysis* would directly copy the source position information to the jmx2\_srcl\_res.fits after IMA step (see Sections 6.7.6 and 8.6.1 for an explanation on the possible FLAG values).

# 6.7.2 Energy binning definition

The user must now specify all the bins (s)he wants in the spectra, using nChanBins, chanMin and chanMax parameters. As this can be tedious, standard binnings are provided by setting nChanBins to be < 1. In this case IMA extracts fluxes in  $2^{-nChanBins}$  bins, i.e. a value nChanBins=0 results in a single wide energy bin, while a value of -4 results in production of 16-channel spectra. The smallest allowed value is -6, corresponding to the 64-channel spectra. Table 5 shows the standard energy bins up to 16 channels.

#### 6.7.3 Spectral response generation

For spectral analysis, a response redistribution function (RMF) should be generated according to the spectral binning specified by the user. The  $j_rebin_rmf$  script allows to do this very easily. There are several ways to

 $<sup>^{11}</sup>$  To force the use of the catalogue positions the JMX*i*-SRCL-RES table must be manipulated by e.g an ftool to update columns RA\_OBJ, DEC\_OBJ. For more details see section 9.

| nChanBins | chanLow                                         | chanHigh                                   |
|-----------|-------------------------------------------------|--------------------------------------------|
| 0         | 46                                              | 223                                        |
| -1        | 46 130                                          | 129 223                                    |
| -2        | $46\ 77\ 130\ 175$                              | $76\ 129\ 174\ 223$                        |
| -3        | $46 \ 59 \ 77 \ 102 \ 130 \ 153 \ 175 \ 199$    | $58\ 76\ 101\ 129\ 152\ 174\ 198\ 223$     |
| -4        | $46 \ 52 \ 59 \ 68 \ 77 \ 89 \ 102 \ 117 \ 130$ | $51 \ 58 \ 67 \ 76 \ 88 \ 101 \ 116 \ 129$ |
|           | $141\ 153\ 165\ 175\ 187\ 199\ 211$             | $140\ 152\ 164\ 174\ 186\ 198\ 210\ 223$   |

Table 5: Standard energy binning.

run this script. The user can specify the bins individually, generate a bin list in a text file (see FTOOLS rbnrmf explanations). For example,

j\_rebin\_rmf chanMin="46 77 130 175" chanMax="76 129 174 233" jemx\_num=2

 $\mathbf{or}$ 

j\_rebin\_rmf binlist=mybins.txt outfile="jmx1\_rmf\_mybins.fits"

Otherwise, it is possible to use pre-defined standard binnings matching those set with nChanBins<1:

j\_rebin\_rmf binlist=STD\_016

(matches nChanBins=-4). As a result, a file jemx\_rebinned\_rmf.fits (unless a different file name has been specified through *outfile*), which contains the rebinned RMF will be produced.

Note that *jemx\_num=1* is the default value. The output file name (default jemx\_rebinned\_rmf.fits) can be set through the *outfile* parameter. It is convenient to create an RMF before the spectral analysis so that one can just pass the rebinned RMF to the analysis scripts. In this way, the fits files with the spectra will automatically contain a link to the correct RMF.

#### 6.7.4 Individual Science Windows Spectra

Let us first proceed with the spectral extraction using the source positions found at the IMA step. In our example only the Crab was found by the imaging analysis, so the spectral analysis will generate only the spectrum of the Crab if you run the script with default values (assuming you run j\_rebin\_rmf in your \$REP\_BASE\_PROD directory):

cd \$REP\_BASE\_PROD/obs/crab

```
jemx_science_analysis startLevel="SPE" endLevel="SPE" jemxNum=2\
    response="$REP_BASE_PROD/jemx_rebinned_rmf.fits"
```

The results of the spectral analysis data are in the file

scw/RRRRPPPPSSSF.001/jmx2\_srcl\_spe.fits

Look on the result of the spectral analysis of the Science Window 010200210010

cd scw/010200210010.001/ fv jmx2\_srcl\_spe.fits

ISDC – JEM-X Analysis User Manual – Issue 10.0

In this file you find the spectra for all sources that were found at the IMA level. Note that the correspondence between source name and source ID can be found in the file jmx2\_srcl\_res.fits.

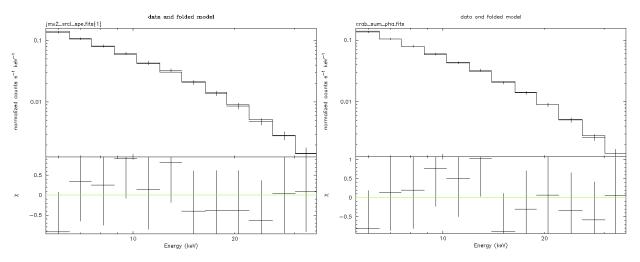



Figure 18: Left panel: Crab spectrum in ScW 010200210010. Right panel: Combined Crab spectrum of ScW 010200210010 and ScW 010200220010.

The JEM-X systematics are of the order of a few percents, typically 3%. We add this explicitly to jmx2\_srcl\_spe.fits file with the command below:

fparkey 0.03 jmx2\_srcl\_spe.fits SYS\_ERR add=yes

The obtained spectrum can be analysed e.g. within *XSPEC* program:

xspec XSPEC>cpd /xw XSPEC>data jmx2\_srcl\_spe.fits{1} XSPEC>ign \*\*-5.0 XSPEC>setplot energy XSPEC>model po XSPEC>fit XSPEC>plot ldat del

The above set of *XSPEC* commands reads the data file and fits the data with "power-law" model<sup>12</sup>. The result is shown in the left panel of Fig. 18. The fit results in a photon index of  $\Gamma = 2.08 \pm 0.11$ , and a normalisation at 1 keV of  $9 \pm 1$ .

To understand the importance of the "user catalog" let us extract the Crab spectrum using the catalog position of the source, not the one found at the IMA level. For this you have to re-run the analysis starting from the very beginning, but specifying that you want to use your own catalog for the spectral and lightcurve extraction. Create a new observation group crab\_usrcat

```
cd $REP_BASE_PROD
og_create idxSwg=jmx.lst ogid=crab_usrcat baseDir="./" instrument=JMX2
```

copy the user catalog created as explained above into the observation group

cp user\_cat.fits obs/crab\_usrcat

 $<sup>^{12}</sup>$  Please note that if your analysis ends with a really weird looking spectrum it can be related to the problem of gain coefficients modelling. See section 8.1.1 for a discussion.

and run the analysis till SPE level in this group:

```
cd obs/crab_usrcat
jemx_science_analysis startLevel="COR" \
    endLevel="SPE" jemxNum=2 CAT_I_usrCat="user_cat.fits" \
    nChanBins=-4 response="$REP_BASE_PROD/jemx_rebinned_rmf.fits"
```

The obtained spectra can be analysed with *XSPEC* as it was done above. To convince yourself that the spectral extraction with and without fixing the source position gives slightly different results, you can compare the two spectra, \$REP\_BASE\_PROD/obs/crab/scw/010200210010.001/jmx2\_srcl\_spe.fits and \$REP\_BASE\_PROD/obs/crab\_usrcat/scw/010200210010.001/jmx2\_srcl\_spe.fits by entering them simultaneously in *XSPEC*.

With this OSA release, and until the flux determination algorithm in  $j\_ima\_iros$  is duplicated in a dedicated spectral extraction tool, it is not possible anymore to generate several spectra in a single analysis with a given time step. The user must define her/his own GTIs for the specific time period.

#### 6.7.5 Combining Spectra of different Science Windows

With the help of the *spe\_pick* program, described in the Introduction to the *INTEGRAL* Data Analysis [1], it is possible to combine the spectra from the different Science Windows. To define the source for which you want to combine the spectra you should either input its Source ID, or the source coordinates. In our case, to combine all the spectra belonging to the given Observation Group of the Crab give the following command

```
spe_pick group="og_jmx2.fits[1]" instrument="JMX2"\
    source="J053432.0+220052" rootname="crab"
```

The **rootname** argument allows to choose the name of the resulting spectral data files. For example, the above command produces the files

| crab_single_pha2.fits | with all individual spectra of the source, |
|-----------------------|--------------------------------------------|
| crab_single_arf2.fits | with corresponding individual ARFs,        |
| crab_sum_pha.fits     | with the combined spectrum,                |
| crab_sum_arf.fits     | with the ARF for the combined spectrum.    |

The resulting spectrum crab\_sum\_pha.fits can be analysed with *XSPEC* exactly in the same way as in the case of the individual ScW spectra (see above). The result of such analysis is shown in the right panel of Fig 18. You can check that combining the spectra obtained with/without fixing the source positions results in slightly different spectral fits in *XSPEC*.

It is also possible to combine the spectra of the Science Windows which belong to different observation groups. This is explained in section 7.4.2.

#### 6.7.6 Extracting Spectra from a given Position in the Sky

It can happen that after the IMA level is done, you find that there is one more source from which you would like to extract a spectrum (e.g. you find a weak source which appears only in the mosaic image or you want to "fix" the position of a strong source with user catalog). In this case you can "force" the script to extract the spectrum from a given position on the sky. For this, you need to redo the analysis from the CAT\_I step, after inserting your source in the user catalog with FLAG=1.

As an example, let us extract the spectrum of the source 4U 1722-30, which is clearly visible in the mosaic image of the Galactic Center region (Fig. 15) but which was not detected the imaging step (you can check that this source does not appear in any of the jmx2\_srcl\_res.fits files in the observation group obs/mos). For this case, the SOURCE\_ID, NAME, RA\_OBJ, DEC\_OBJ are J172733.2-304807, 4U 1722-30, 261.8883

and -30.80194, respectively. Fill the corresponding line in the file <code>user\_cat.fits</code>, update column FLAG (FLAG=1), and run the *jemx\_science\_analysis* with the user-defined catalog, as explained above.

The resulting files scw/RRRPPPPSSSF.001/jmx2\_srcl\_spe.fits will contain a row with the spectrum of 4U 1722-30. The quality of the single ScW spectra is not very high, because of the short integration time (see Fig. 19). However, with the help of the *spe\_pick* command (see previous sub-section) you can sum up the spectra of individual ScWs and obtain a better spectrum based on longer integration time (Fig. 19).

Sources marked with FLAG=1 in the user catalog will be included in the flux fitting procedure, and their derived fluxes will appear in the srcl\_res file. You can introduce many FLAG=1 sources simultaneously, and you will get fluxes estimates for all of them in srcl\_res. The flux values for the FLAG=1 sources are not derived from a fit including all these sources simultaneously. Such a fit might easily be highly unstable. Instead the flux estimate for each of the FLAG=1 sources will be extracted from a separate fit for this specific source together with the "basic source set" i.e. the strong sources found by j\_ima\_iros.

The maximum number of FLAG=1 sources which will be accepted by j\_ima\_iros in the analysis of a specific science window is 75. However this does not mean that you cannot work with a 'user catalog' with 200 FLAG=1 sources. What counts for j\_ima\_iros is the number of FLAG=1 sources which falls inside the 10 degree diameter field-of-view for the current science window. The program will not fall over if there are more than 75 FLAG=1 sources visible, it will simply only accept the first 75 visible FLAG=1 sources in the user catalog.

Under special circumstances you may want to force a specific source into all the fits (for all the FLAG=1 sources). This can be done (but is not recommended for general use) by setting FLAG=3. A maximum of three FLAG=3 sources will be extracted from your user catalog - additional FLAG=3 sources will not be neglected.

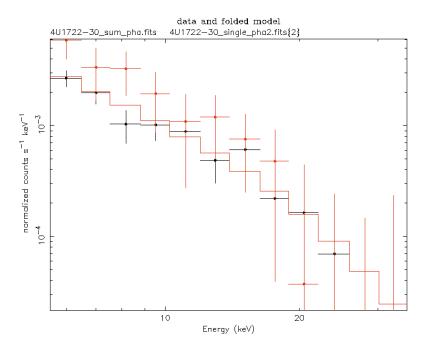



Figure 19: The spectrum of 4U 1722-30 in ScW 0053004200 (red) and in the whole revolution 0053 (black).

#### 6.7.7 Spectral Extraction from Mosaic Images

Using the *mosaic\_spec* script one can extract the source spectra from mosaic images and from individual ScW images. To extract spectra from a mosaic one needs first to produce images in narrow energy bands

(to get a reasonable number of energy bins in the resulting spectrum).

As an example, let us extract the spectrum of 4U 1722-30 from the mosaic images. First, one needs to create a new observation group using the list of ScWs considered for the mosaic of the Galactic Center region:

```
cd $REP_BASE_PROD
og_create idxSwg=mos.lst ogid=mosspec baseDir="./" instrument=JMX2
cd obs/mosspec
```

Next, one needs to produce the sky images in the 16 chosen energy bins.

```
jemx_science_analysis startLevel="COR" endLevel="IMA2" nChanBins=-4\
IMA_detImagesOut=no IMA_userImagesOut=yes \
skipLevels="LCR,SPE,BIN_S,BIN_T" jemxNum=2
```

The above command will produce JEM-X sky images and the mosaic in the 16 standard energy bands. You have to explicitly specify that you want to keep the VARIANCE extension in the output of mosaic step (IMA2\_viewVar=Y, which is set to "yes" by default.), since the variance value at the source location is the error of the flux determination in a given energy band.

Now you can find the spectrum of any of the sources (and even extract a spectrum or energy-dependent upper limit of the flux from any position on the sky) from the sky images in each ScW, using the *mosaic\_spec* script. E.g. the command

```
cd scw/005300410010.001
mosaic_spec "" "" DOL_idx="jmx2_sky_ima.fits"\
DOL_spec="spectrum_scw.fits(JMX2-PHA1-SPE.tpl)"\
EXTNAME="JMX2-SKY.-IMA" ra=261.89 dec=-30.80 \
posmode=0 widthmode=-2 Intensity="RECONSTRUCTED"
```

will extract the spectrum from the position on the sky RA=261.89, DEC=-30.80 corresponding to the position of 4U 1722-30. The spectrum will be written in the file spectrum scw.fits (using the template specified in the template file JMX2-PHA1-SPE.tpl). A number of parameters of the mosaic spec script specify the way in which the source flux and error are extracted from the sky image. In general, the script attempts to fit a Gaussian to the excess of intensity at the position of the source. The parameter posmode=0 specifies that the source position always should be left free (-1 would freeze the source coordinates, as the user may prefer to do with relatively weak sources). The parameter widthmode=-2 specifies that the width of the fitted Gaussian should be read from the JEM-X image. The parameter Intensity specifies which of the possible intensity images will be used for the spectral extraction (only RECONSTRUCTED or RECTIFIED can be meaningfully used; RECONSTRUCTED is recommended). For JEM-X, the use of the size parameter (that in the past was set to size=7) is now obsolete.

To extract the spectrum from the mosaic image, go to the directory which contains jmx2\_mosa\_ima.fits and run *mosaic\_spec* in the following way

```
cd ../../
mosaic_spec "" "" DOL_idx="jmx2_mosa_ima.fits"\
   DOL_spec="spectrum_mosa.fits(JMX2-PHA1-SPE.tpl)"\
   EXTNAME="JMX2-MOSA-IMA" ximg=0 yimg=0\
   ra=261.89 dec=-30.80 posmode=0 widthmode=-1 psf=2.0 Intensity="RECONSTRUCTED"
```

As a result, a spectrum mosa.fits will be extracted from the sky position of 4U 1722-30.In this second case we used the combination of parameters widthmode=-1 psf=2.0, as the PSF of mosaic images is slightly larger than the PSF of single pointing images.

To analyse the spectra, you need to rebin the response matrix with the help of ftool j-rebin\_rmf, as it is explained above.

The ancillary response function (ARF) for JEM-X2 spectra, can be automatically extracted from the IC tree using the script  $j_{image_arf}$ :

```
j_image_arf jemx_num=2 outfile=jmx2_image_arf.fits
```

Note that this ARF can only be used with spectra extracted with *mosaic\_spec*, either for ScW images or from mosaics. The ARFs to be used when running the SPE step and *spe\_pick* are different, and are automatically found and attached to the spectra by the *jemx\_science\_analysis* script.

Now you can enter the spectra extracted from the images in the individual ScWs and from the mosaic image into XSPEC and analyse them in a way similar to the one described in the previous sections.

```
xspec
data spectrum_mosa.fits
resp jemx_rebinned_rmf.fits
arf jmx2_image_arf.fits
cpd /xw
setplot energy
plot ldata
......
```

The resulting spectrum is shown in Fig. 20.

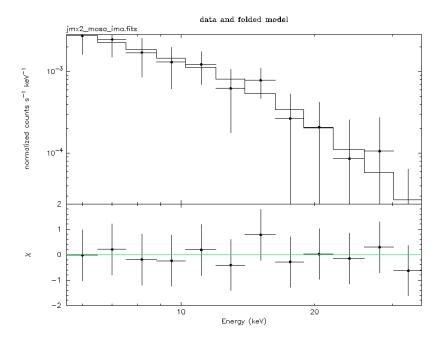



Figure 20: The spectrum of 4U 1722-30 extracted from mosaic image.

# 6.8 Source Lightcurve Extraction

#### 6.8.1 Lightcurve extraction at LCR level

The lightcurves of sources found at the IMA step are created at the LCR level of the *jemx\_science\_analysis* script. However, this step is omitted by default. LCR step should be used only for the cases where time bins shorter than the duration of one ScW are necessary. If the ScW time scales are sufficient, better fluxes are obtained from the IMA step (see section 6.8.5). The file  $jmx2\_srcl\_res.fits$  serves as an input catalog for the lightcurves extraction in each ScW. It is important to note, however, that source positions found by *j\_ima\_iros* will differ slightly from ScW to ScW. The deviation of the found source position from the true one will lead to an error in the determination of the source lightcurve. To avoid this difficulty it is recommended to create a "user catalog" (in the same way as you did for the spectral extraction) with the names and positions of the sources for which you want to extract the lightcurves (see section 9 to force usage of the catalogue coordinates).

#### 6.8.2 Individual Science Windows Lightcurves

To produce the Crab lightcurve, we have to run the lightcurve analysis in directory \$REP\_BASE\_PROD/obs/crab\_usrcat.

The LCR level of the *jemx\_science\_analysis* script produces the lightcurves of the sources from the catalog of sources found in the imaging analysis, jmx2\_srcl\_res.fits. To obtain the lightcurve of the only found source (Crab) you can give the command

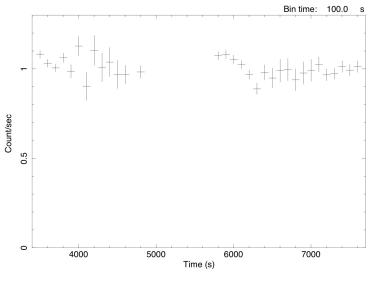
```
jemx_science_analysis startLevel="LCR" endLevel="LCR" skipLevels=""\
    nChanBins=2 chanLow="46 129" chanHigh="128 223" \
    CAT_I_usrCat=user_cat.fits jemxNum=2 LCR_timeStep=100.0
```

The parameter LCR\_timeStep sets the binning time of the light curve in seconds. Selecting nChanBins=2, chanLow="46 129" chanHigh="128 223" we choose to produce the lightcurve in two energy bins: 3-10 keV and 10-35 keV.

Notice that the hidden parameter LCR\_fluxScaling controls the unity in which the count rate is displayed. Until OSA9, the count rate was scaled to one  $dm^2$  (this can be set with LCR\_fluxScaling=2), with OSA10, we decided to scale it to one  $cm^2$  (default value LCR\_fluxScaling=3).

As a result for each found source a lightcurve is produced in each energy band. The results are written into the file

scw/RRRRPPPPSSSF.001/jmx2\_src\_lc.fits


#### 6.8.3 Combining Lightcurves from Different Science Windows

Similar to the spectral case there is the tool  $lc_pick$  (see [1] for details) to combine the lightcurves from the single Science Windows.

lc\_pick group="og\_jmx2.fits[1]" source="J053432.0+220052"\
 lc="crab\_lc.fits"

The resulting file contains two lightcurves, one for each energy band. One of the obtained lightcurves is shown in Figure 21.

It is also possible to sum up lightcurves from different observation groups. The method to do this is the same as in the spectral case, and is explained in section 7.4.2.



Start Time 12866 15:58:21:925 Stop Time 12866 17:06:41:925

Figure 21: Crab lightcurve, first energy band.

The vignetting by the collimator and mask support structure of JEM-X has a more complex structure than originally thought. Therefore, source fluxes can vary significantly, of the order of 10%, from one Science Window to the next. At off-axis angles of 5 degrees this can even reach 30% in bad cases. The modeling of vignetting at the IMA and SPE steps is at the moment much better than this.

#### 6.8.4 Displaying the Results of the Lightcurve Extraction

To see the source lightcurve, you should plot the column RATE with error ERROR versus column TIME, whereas to see the background lightcurve, you should plot column BACKV with error BACKE versus TIME. To display the resulting lightcurve it is convenient to use the *lcurve* program from the FTOOLS package:

As a result, the crab\_lc.ps file was produced and is shown in Figure 21.

#### 6.8.5 Lightcurve extraction from the IMA step

IMA step of *jemx\_science\_analysis* script outputs the fluxes of all detected sources in jmxi\_srcl\_res.fits files. A Scw-by-Scw lightcurve of all these sources could be obtained with the help of *src\_collect* script.

As an example, let us produce the Scw-by-Scw lightcurve of GX 354-0 in two energy bands, 3-10 keV and 10-35 keV. For this we will need first to extract fluxes from the images in these energy band in each ScW:

```
cd $REP_BASE_PROD
og_create idxSwg=mos.lst ogid=ima_lc baseDir="./" instrument=JMX2
cd obs/ima_lc
jemx_science_analysis startLevel="COR" endLevel="IMA" jemxNum=2\
    nChanBins=2 chanLow="46 129" chanHigh="128 223"
```

For each source, IMA step output contains fluxes in 3 "standard" IMA energy bands, plus the fluxes in the energy bins specified by nChanBins, chanMin and chanMax parameters.

To extract the ScW-by-ScW lightcurve from the images one has to run the script

```
src_collect group=og_jmx2.fits+1 results=GX354_scw_lc.fits\
instName=JMX2 select="NAME == 'GX 354-0' "
```

As a result, the file  $GX354\_scw\_lc.fits$  will contain the source lightcurves in the 3 standard and the userdefined energy bands. To display the lightcurve e.g. in the 1st user defined energy band (3-10 keV) in our example you can use the fv program to plot the FLUX[4], FLUXERR[4] vs. TSTART. The [4] in the square brackets signifies that one wants to plot the 4-th energy band (remember that the first three bins always contains the fluxes in the detection images, so the first user bin is the 4th one). One can extract the light curve in a single energy bin usuing the following command:

```
fcopy "GX354_scw_lc.fits [col TIME=(TSTART+TSTOP)/2; RATE = FLUX[4];\
ERROR = FLUX_ERR[4]]" light_curve.fits.
```

This file can be visualized with lcurve as explained above.

Note, that the source GX 354-0 is a bright X-ray binary which is detected in each ScW, so that information about the source flux in each ScW is always available in the jmx2\_srcl\_res.fits files. For a weaker source, like 1E 1740.7-2942, which is not always detected in single ScWs, one has to "force" *jemx\_science\_analysis* to output information about the flux (or an upper limit on the flux) of the source into jmx2\_srcl\_res.fits files in each ScW by running the analysis with the user-defined input source catalog, as it is explained in section 7.5.

# 7 Useful recipes for JEM-X data analysis

This section collects some recipes that can be useful in the analysis of JEM-X data, in analogy to the recipes described in the IBIS cookbook (available at URL http://www.isdc.unige.ch/integral/analysis).

# 7.1 User GTIs

The way of creating User Good Time Intervals is described in the Introduction to the *INTEGRAL* Data Analysis [1]; a convenient tool gti\_user exists for this purpose. To use your own GTI within the JEM-X analysis you should set two parameters: GTI\_gtiUser, defining the location of your file, and GTI\_TimeFormat defining the time format of the user GTI table. The possible values of the GTI\_TimeFormat are IJD for the Integral Julian Date (see Introduction to the *INTEGRAL* Data Analysis [1]), UTC, and OBT. Below you find

an example of the command to launch the JEM-X analysis with the default values and the user GTI table  $user\_gti.fits$ 

```
jemx_science_analysis startLevel="COR" endLevel="IMA" \
    COR_outputExists=y \
    DEAD_outputExists=n \
    GTI_gtiUser="user_gti.fits[1]" \
    GTI_TimeFormat="IJD"
```

# 7.2 Usage of the predefined Bad Time Intervals

Read this to know how to make proper selection of the science windows that should be used in your analysis.

Different things could happen to the instrument during a particular science window. To inform the user on any unusual things that she should be aware of, the list of time intervals which had some anomalies (bad time intervals) has been created and is kept in the latest version of the

 $REP_BASE_PROD/ic/jmxi/lim/jmxi_gnrl_bti^*.fits file. (To download the files, the user can follow the instructions given to 'rsync' the entire IC structure, as explained in section 6.1).$ 

For JEM-X the BTI are divided into 2 categories:

- BAD\_RESPONSE indicates a problem related to the response of the instrument, most typically linked to rapid gain changes following the re-activation of the unit after a long dormant period, or after a solar flare.
- BAD\_CONFIGURATION indicates cases affected by change of configuration, or any other problem.

For the most conservative data analysis use the following value of the (hidden) GTLBTLNames parameter:

GTI\_BTI\_Names="BAD\_CONFIGURATION BAD\_RESPONSE"

This is also the default value. In case the user wants to analyse data affected by some BTI, the parameter should be modified accordingly (see section 8.2.5). For instance, to analyze periods affected by a solar flare, use GTI\_BTI\_Names="BAD\_CONFIGURATION".

However, you should always be careful while setting this parameter – BTIs are set by the JEM-X team for specific problematic periods; forcing their usage, the reliability of the results can not be guaranteed, especially for fluxes in BAD\_RESPONSE cases.

## 7.3 Rerunning the Analysis

Read this if you would like to redo part of your analysis, e.g. if your run has crashed, or if you want to change some parameters.

In case you want to re-run the analysis with different parameters, run og\_create but this time with a different "ogid" parameter. This will create a new tree under obs/ogid where all the new results will be stored. If the pipeline has crashed<sup>13</sup>, in general it is safer to restart your analysis from scratch removing the obs/ogid directory and restarting from the og\_create step.

In any case, we give below a set of recipes that can be useful.

 $<sup>^{13}</sup>$  If any executable crashes then it terminates with non zero status. The meaning of the status value can be found at <code>http://www.isdc.unige.ch/integral/analysis#Errors</code>

Because of the group concept you cannot just delete the result you do not like and restart the pipeline. All results that were produced in the course of the analysis are linked to the group, and should be detached before you relaunch the script. To do this you can use the *og\_clean* program, that will clean an Observation Group up to the level specified with parameter **endLevel**. All data structures with a level equal or prior to **endLevel** will be kept, while the data structure with a later level will be erased. For example, to run the image extraction (IMA level) you should clean from the group whatever comes after the BIN\_I level, as this is the level immediately preceding the IMA one.

```
og_clean ogDOL="og_jmx2.fits" endLevel="BIN_I"
```

If og\_clean fails it could be due to the fact that the group was corrupted. You should try to fix it with  $dal_clean$  program

```
dal_clean inDOL="og_jmx2.fits" checkExt="1" backPtrs="1" checkSum="1"
```

and launch  $og_{-}clean$  only afterwards.

## 7.3.1 Creating a second mosaic in the Observation Group

If you already extracted a mosaic from the Science Windows in your Observation Group (as explained in section 6.6.4), and now you would like to extract a second mosaic on the same Science Windows (changing e.g. the IMA2\_diameter parameter), you will see that **og\_jmx2.fits** points to the initial mosaic output (row 2 of the first extension is jmx2\_obs\_res.fits). This will interfere with the new mosaic you are about to launch. You will need to detach the previous results from the og\_group, and rename (or delete) them. To do so you can either clean the og\_group with the task **og\_clean**, as explained in section 6.6.4, or you can directly detach the former mosaic results from the group:

```
cd $REP_BASE_PROD/obs/og_group
fdelrow og_jmx2.fits+1 2 1 N Y
mv jmx2_mosa_ima.fits jmx2_mosa_ima_original.fits
mv jmx2_obs_res.fits jmx2_obs_res_original.fits
```

With the fdelrow command you detach from the first extension of  $og_jmx2.fits$  row number "2" (= the first row to be deleted, number of rows to be deleted = "1"), you were shown no keyword values, "N", and you agreed to proceed, "Y". At this point you can run again the mosaic step through *jemx\_science\_analysis*, with Start and End levels both set to IMA2.

# 7.4 Combining results from different observation groups

Read this if you have a set of science windows belonging to different runs for which you have already built images, spectra or lightcurves and want to combine the results.

Section 7.4.1 explains how to combine all the existing images in a final mosaic, while section 7.4.2 shows how to merge different lightcurves and spectra.

#### 7.4.1 Creating a mosaic from different observation groups

Suppose you want to analyse 5 Science Windows and are not interested in the final mosaic. You create the group with og\_create and then you launch the analysis till the imaging step but without the mosaic step (i.e. from COR till IMA, see 6.6). An image is created per Science Window but you do not have the overall final mosaic. If you then change your mind and decide that you want the mosaic, all you have to do is to move in the working directory \$REP\_BASE\_PROD/obs/xxx and relaunch the jemx\_science\_analysis

command with startLevel="IMA2", endLevel="IMA2".

This is relatively simple because all the Science Windows belong to the same group, so combining the results is trivial. But if this is not the case, i.e. if you have run different sets of analysis, each one with its own og\_create command, then you need to make some intermediate steps <sup>14</sup>. You basically need to create a file that points to all the Science Windows you want to co-add. We call this file an "index". To create an index make a list of the Science Window groups you want to combine and save it as, e.g., dols.txt. To ensure a proper work of the software give the full path, i.e. your file should look like

/WORKING-DIR/obs/GROUP1/scw/011901060010.001/swg\_jmx2.fits /WORKING-DIR/obs/GROUP1/scw/011901070010.001/swg\_jmx2.fits /WORKING-DIR/obs/GROUP2/scw/012000360010.001/swg\_jmx2.fits /WORKING-DIR/obs/GROUP2/scw/012000370010.001/swg\_jmx2.fits

The first 2 files belong to a run with the og\_create parameter "ogid" equal to "GROUP1" while the latter two to a run with "ogid" equal to "GROUP2". /WORKING-DIR/ has to be the extensive name of \$REP\_BASE\_PROD. WARNING: make sure that obs/\*/scw/\*.001/jmx2\_sky\_ima.fits files exist in all the Science Windows you mention, otherwise the merging will not work. Then give the command that actually builds the fits file from the ASCII file:

```
cp dols.txt $REP_BASE_PROD/obs/GROUP1/
cd $REP_BASE_PROD/obs/GROUP1/
txt2idx element="dols.txt" index="index_comb.fits"
```

The file "index\_comb.fits" is created and you can look at it with **fv**. In the first extension you have 4 rows, each row has the link to a given swg\_jmx2.fits file. What you need to do now is to let the software know that it has to use this particular set of Science Windows for the analysis. You do this by pointing **og\_jmx2.fits** to this file. This has to be done because no matter what level of the scientific analysis you are performing, the software will analyse the Science Windows pointed to by **og\_jmx2.fits**. Replace the first row of og\_jmx2.fits with:

```
cd $REP_BASE_PROD/obs/GROUP1/
ftedit og_jmx2.fits MEMBER_LOCATION 1 index_comb.fits
```

You may check with fv that actually the first row of og\_jmx2.fits is indeed "index\_comb.fits".

At this point you are ready to launch the analysis and to create a joint mosaic:

```
cd $REP_BASE_PROD/obs/GROUP1
jemx_science_analysis ogDOL="og_jmx2.fits" \
    startLevel="IMA2" endLevel="IMA2"
```

See 6.6 for a description of the main parameters of the mosaic step. The above command is valid in case you have just run the ScW analysis part so that you indeed keep the same energy boundaries. Otherwise, if your parameter file has changed in between, you should add in the above the definition of nChanBins, chanLow and chanHigh according to the energy boundaries of the single ScW maps you want to merge.

#### 7.4.2 Combining spectra and lightcurves from different observation groups

In sections 6.7.5 and 6.8.3 you have seen how to merge lightcurves and spectra from different Science Windows belonging to the *same* group. In that case the file **og\_jmx2.fits** points to all the Science Windows and it is possible to launch the collecting/merging tools  $lc_pick$  and  $spe_pick$  directly on the group (group=og\_jmx2.fits+1).

 $<sup>^{14}</sup>$  Please note that the images that you intend to merge MUST have the same energy boundaries i.e. all the ScW maps must have been analysed in the same way. You cannot merge a 3-10 keV map with a 7-18 keV one.

If you have Science Windows belonging to *different* groups, you need an intermediate step. Basically you need to create a file (an index) that points to all the Science Windows you want to co-add, similarly to the case seen in the previous section. Then this file will be given as input via the "group" parameter at the place of **og\_jmx2.fits**.

To create the index make a list of the Science Window groups you want to combine and save it as, e.g., **dols.txt** under \$REP\_BASE\_PROD/obs/. To ensure a proper work of the software give the full path, i.e. your file should look like

/WORKING-DIR/obs/GROUP1/scw/011901060010.001/swg\_jmx2.fits /WORKING-DIR/obs/GROUP1/scw/011901070010.001/swg\_jmx2.fits /WORKING-DIR/obs/GROUP2/scw/012000360010.001/swg\_jmx2.fits /WORKING-DIR/obs/GROUP2/scw/012000370010.001/swg\_jmx2.fits

The first 2 files belong to a run with the og\_create parameter "ogid" equal to "GROUP1" while the latter two to a run with "ogid" equal to "GROUP2". /WORKING-DIR/ has to be the extensive name of \$REP\_BASE\_PROD. WARNING: make sure that the lightcurve and spectra result files exist for each Science Window you want to co-add (jmx2\_src\_lc.fits and jmx2\_srcl\_spe.fits files).

Then give the command that actually builds the fits file from the ASCII file:

```
cd $REP_BASE_PROD/obs/
txt2idx element="dols.txt" index="index_comb_2.fits"
```

Then run *lc\_pick* and *spe\_pick* putting the parameter "group" equal to "index\_comb\_2.fits":

```
cd $REP_BASE_PROD/obs/
lc_pick source="J180108.2-250445" attach=n \
group=index_comb_2.fits+1 lc=GX5-1.lc.fits emin="3.04" \
emax=10.08 instrument="JMX2"
```

GX5-1.lc.fits contains the merged lightcurve of GX 5-1 (source\_ID=J180108.2-250445, as can be seen e.g. in the ISDC reference catalog) in the 3.04–10.08 keV band (energy range that of course has to exist in the jmx2\_src\_lc.fits original files!). Using lc\_pick without specifying the energy range, will produce an output file with multiple extensions, one per available energy range.

```
cd $REP_BASE_PROD/obs
spe_pick group="index_comb_2.fits"\
    source="GX 5-1" rootname="GX5-1" instrument="JMX2"
```

GX5-1\_sum\_pha.fits (the combined spectrum of GX 5-1) and GX5-1\_single\_pha2.fits (a file with the four spectra of the initial four Science Windows collected together) are created. *spe\_pick* also creates an ARF, appropriate for your particular dataset. This ARF is written to GX5-1\_sum\_arf.fits and GX5-1\_single\_arf2.fits files. The names of the response and ancrfile are inserted in the keyword of the final files, so that they are automatically recognised by XSPEC.

# 7.5 Create your own "user catalog"

Read this if you are familiar with the sources in your field of view and you want to build your own catalog for the Imaging step, spectral and light curve extraction.

As already discussed in section 6.6, it can be very useful to use your own input catalog for the imaging, and in particular spectral and light curve extraction. The easiest way to build it is to modify the general catalog

with the help of the fcopy program of FTOOLS. For example, if you want to create a catalog (usrcat.fits) with only three sources, Crab, 3C111, and XPer do the following:

```
cd $REP_BASE_PROD
fcopy "$ISDC_REF_CAT[NAME == 'Crab'|| NAME == '3C 111'|| NAME == 'X Per']" usrcat.fits
chmod -w usrcat.fits
```

If you want to add a new source, not specified in the general reference catalog, add a line to usrcat.fits with the help of the fv tool, and fill in the Source\_ID, NAME, RA\_OBJ and DEC\_OBJ columns. As Source\_ID you can choose whatever you like provided that this identifier is unique.

This catalog can be used in JEM-X analysis, by means of the CAT\_I\_usrCat parameter (see an example in section 6.7.4).

The FLAG column in usrcat.fits should be set to 1 (e.g. with the program fv), to have the catalog source position information copied, after the IMA step, into the columns RA\_CAT and DEC\_CAT of jmx*i*\_srcl\_res.fits. See the Known Issues description in section 9, to force the usage of these coordinates at SPE and LCR levels.

# 7.6 Barycentrisation

The tool making such a correction is called *barycent*. Note that it re-writes the input file, so it may be worth to copy the original file first. Below we show an example for 4U 1700-377, Science Window number 011800900010 and observation group identification ("ogid" parameter of og\_create) equal to "OGID":

```
cd $REP_BASE_PROD/obs/OGID
cp scw/011800900010.001/jmx2_src_lc.fits jmx2_src_lc_011800900010_bar.fits
barycent inCOL=TIME outCOL=TIME \
    outDOL="jmx2_src_lc_011800900010_bar.fits[2]" \
    inDOL='' auxDOL="../../aux/adp/0118.001/orbit_historic.fits" \
    raOBJ=255.9865 decOBJ=-37.84414
```

In the example we have applied barycentrisation to the first energy range of 4U 1700-377 that happens to be in the extension number 2 ("[2]"). Thus the extension you give as "outDOL" depends on the source and energy range you need to correct. The overview of the content of each extension is in the input file  $jmx2\_src\_lc.fits$ , i.e. the first extension (GROUPING).

Note that *barycent* tool does not use group concept, and is used directly with the lightcurve, but for it successful work the **REP\_BASE\_PROD** variable should be set and point to the place in which there is an IC directory, e.g. directory\_of\_ic\_files\_installation\_\_/ic, or a symbolic link to it (section 6.1).

See more details on *barycent* tool in the Data Analysis section of [1].

# 7.7 Timing Analysis without the Deconvolution

Read this if you are interested in fast variability studies (up to milliseconds).

In the same way as for ISGRI analysis, also for JEM-X it is possible to do timing analysis in a non binning way, i.e. starting from the single events. This way is suitable for very short time scales (up to milliseconds) and is less recommended for longer time bins for which the the methods described in Sect.6.8 are suitable.

In the example we will use one of the Science Windows with Crab data you have already downloaded (e.g. 010200210010).

In general the table with the events can be very big, so if you are interested in only part of the Science Window (e.g. in the case of a burst) it is better to define a user good time interval (see Section 7) and work within it.

Create with og\_create observational group \$REP\_BASE\_PROD/obs/crab/og\_jemx2.fits, and run analysis from COR to DEAD level, prepare the catalog, with Crab only.

```
cd $REP_BASE_PROD/obs/crab
ibis_science_analysis startLevel=COR endLevel=DEAD jemxNum=2
```

```
fcopy infile="$ISDC_REF_CAT[NAME=='Crab']" outfile="crab_cat.fits"
```

For the next command you will need to specify the Instrument Model file to be used. This is a file located in your  $REP_BASE_PROD/ic$  folder. In your IC tree you will found several files named  $jmxi_imod_grp_*$ .fits. Each of them refers to a different period. To identify the file to be used together with your data, you can check the (indicative) validity interval reported in table 6 for each imod file. In our example, based on scw 010200210010, we will use file  $jmx2_imod_grp_0299$ .fits .

At this point you are ready to create the lists of photons:

```
cd $REP_BASE_PROD/obs/crab
```

```
evts_extract group="og_jmx2.fits" \
events="evts_j2.fits" instrument=JMX2 \
sources="crab_cat.fits" gtiname="MERGED" \
instmod="$REP_BASE_PROD/ic/jmx2/mod/jmx2_imod_grp_0299.fits" \
pif=yes deadc=yes attach=no barycenter=1 timeformat=0 evttype=0
```

For JEM-X it is currently not possible to save the PIF of a given source. The parameter "pif" can be therefore put equally to 'yes' or 'no', as it adds no information to the output file.

Now you can produce the Crab power spectrum:

```
powspec
Ser. 1 filename +options (or @file of filenames +options)[] evts_j2.fits
Name of the window file ('-' for default window)[] -
Newbin Time or negative rebinning[] 0.001
Number of Newbins/Interval[] INDEF
Number of Intervals/Frame[] INDEF
Rebin results? (>1 const rebin, <-1 geom. rebin, 0 none)[] 0
Name of output file[default]
Do you want to plot your results?[] yes
Enter PGPLOT device[] /XW
hardcopy crab_powerspec.ps/PS
```

For the details on *INTEGRAL* absolute timing see Walter et al. 2003 [8].

If your data have many short GTIs (e.g. in the case of telemetry saturation due to a solar flare or when PICsIT is in non standard mode) you can obtain spurious results. A typical case is finding an 8 sec period in your data due to the fact that the telemetry restart is synchronized with an 8 sec frame! When possible, compare your results with IBIS/ISGRI ii\_light that is immune to this problem and can reach about 0.1 sec binning.

|                     |                              | J                   | EM X-2                  |
|---------------------|------------------------------|---------------------|-------------------------|
| J                   | EM X-1                       | Revolution interval | IMOD instance XXX       |
| Revolution interval | IMOD instance XXX            |                     | jmx2_imod_grp_0XXX.fits |
|                     | $jmx1\_imod\_grp\_0XXX.fits$ | 1 - 5               | 292                     |
| 1 - 8               | 300                          | 6 - 9               | 293                     |
| 9 - 14              | 301                          | 10 - 14             | 294                     |
| 15 - 19             | 302                          | 15 - 37             | 295                     |
| 20 - 37             | 303                          | 38 - 44             | 296                     |
| 38 - 44             | 304                          | 45 - 71             | 297                     |
| 45 - 93             | 305                          | 72 - 93             | 298                     |
| 94 - 163            | 306                          | 94 - 135            | 299                     |
| 164 - 197           | 307                          | 136 - 172           | 300                     |
| 198 - 221           | 308                          | 173 - 197           | 301                     |
| 222 - 244           | 309                          | 198 - 244           | 302                     |
| 245 - 310           | 310                          | 245 - 310           | 303                     |
| 311 - 406           | 311                          | 311 - 389           | 304                     |
| 407 - 458           | 312                          | 390 - 499           | 305                     |
| 459 - 532           | 313                          | 500 - 579           | 306                     |
| 533 - 622           | 314                          | 580 - 659           | 307                     |
| 623 - 659           | 315                          | 660 - 713           | 308                     |
| 660 - 713           | 316                          | 714 - 799           | 309                     |
| 714 - 781           | 317                          | 800 - 855           | 310                     |
| 782 - 869           | 318                          | 856                 | 311                     |
| 870 - 934           | 319                          | 857 - 869           | 312                     |
| 935 - 999           | 320                          | 870 - 934           | 313                     |
| 1000 -              | 321                          | 935 - 999           | 314                     |
|                     |                              | 1000 -              | 315                     |

 Table 6:
 JEM-X imod files instance number to use.

 (indicative. To have the exact validity range check the FITS file header in your IC tree.)

 JEM X-2

# 8 Basic Data Reduction

In the previous cookbook chapter (Section 6) several examples of the JEM-X data scientific analysis along with the description of the results were given. There you have seen that in order to run Scientific Analysis you should just launch the main script *jemx\_science\_analysis* with a desired set of parameters. As it was discussed in the Overview (Section 5) processing of the main script consists mainly of a loop over the pointings in the Observation Group calling the script *jemx\_scw\_analysis*, which in turn consists of smaller scripts unifying the executables with the similar tasks, see Figure 22. In the present chapter we describe these small scripts in more details in order to explain how the main script works and what parameters you have to enter for a proper analysis.

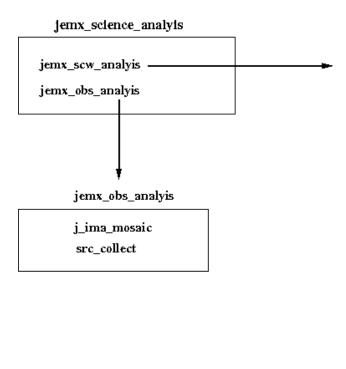
Describing the executables we mention all the parameters that were included as a parameter to the main script. All other parameters are set internally. To know about them type the name of the desired executable with --v option. Non-hidden parameters of the main script are marked with a bold font. Usually names of the main script parameters are derived from the corresponding name of the executable parameters by adding as prefix the name of the OSA level at which they are called (e.g. parameter diameter of the executable j\_ima\_mosaic called at IMA2 level of OSA, is named IMA2\_diameter in the main script. In the rare case when this rule is broken we give both names in the description of the executable. The detailed description of the results produced at each step can be found in the Appendix section.

In the Appendix you also find the description of raw and prepared data with which you start the analysis.

## 8.1 $j_{-}correction$

This script corrects all data available within the Science Window Group for a given JEM-X detector. It calls two executables that do the actual corrections:

- *j\_cor\_gain*
- $j_{-}cor_{-}position$


#### **8.1.1** *j*\_*cor*\_*gain*

The executable  $j_cor_gain$  corrects all science data received at Full, Restricted, Spectral/Timing and Spectral modes for the condition of the individual pixels in the detector, temporal and spatial changes in the detector gain. The telemetry energy bins (PHA channels) of each event are converted to PI energies, using gain determined by

• Temporal gain variations across the detector are determined by the energy channel positions of the fluorescence lines of Cd-109 and Fe-55 sources placed above certain points on each detector. The peak positions are determined every four minutes (256 sec) to give current time variation of the detector gain, and compared to the Cd/Fe positions at a reference time when the Xe fluorescence lines of the gas over the entire detector are known. The values of the found Cd/Fe calibration line positions are kept in the gain history table and are used for gain conversion from PHA to PI channels in two possible ways. For gainModel=0, a linear interpolation between gain corrections is used for each event or spectrum at a given time. For gainModel=2 a time-decay model is used to smooth out statistical noise and discharge glitches at the calibration points. It is recommended that gainModel=2 is used for all processing. gainModel=1 is obsolete and should not be used (it is only included for backward compatibility).

The JEM-X detector gain varies significantly at the beginning of each revolution for a few hours after the instrument has been switched on. The pattern is very similar each time and modeled in the gain correction step (if the parameter COR\_gainModel is not 0).

Due to aging of the instruments the JEM-X units (in particular JEM-X1) have become sensitive to not only temperature, but also the total hardware trigger-rate of the detector. For COR\_gainModel=4,



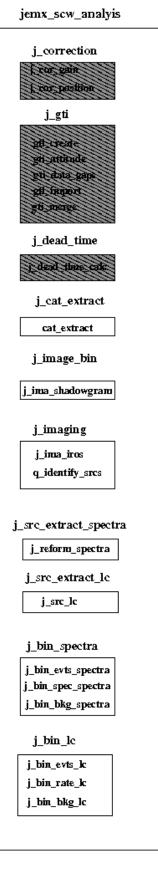



Figure 22: Detailed decomposition of the *jemx\_science\_analysis* script. Grey boxes correspond to steps already performed for revision 2 data.

the trigger rate dependency is taken into account, while for  $COR_gainModel=3$  the algorithm will not include this dependency in the gain smoothing process.

For some cases, this modeling fails and a Warning with an error code of -321126 is reported. The gain correction program continues using linear interpolation values of the gain correction parameters. This is an ad hoc solution to ensure pipelines continue to run, but implies that the energy determinations of the events will be somewhat off. The corresponding events are flagged as having bad gain determination and may be ignored by subsequent steps or lead to distorted results.

In many cases where linear interpolation is used, gain correction of events will be fine. The user should look at the full detector spectrum produced by level BIN\_S to see whether the Xe line peaks at PI channel 209. The default gain smoothing model is now COR\_gainModel=4. If the smoothing goes wrong with model four and you dont like the look of the linear interpolation results, try using model 3. All of the foregoing considerations about choice of model number can be ignored if there is an IC table with all the gain corrections already determined. The log file will show whether a gain history table (JMXi-GAIN-OCL) has been used to correct the data. (See below).

- spatial gain variations across the entire detector area. These are initially determined by pre-flight calibration, but have been updated using in-flight calibration based on on the Xe 30 Kev fluorescence lines which can be observed over the whole detector.
- Unusual gain fluctuations hidden from the calibration sources (e.g. hidden gain suppression on the plate) and rare telemetry/procedure changes that can't be dealt with automatically, are handled by having the instrument team deliver instrument characteristics gain history tables, JMXi-GAIN-OCL, to ISDC. These are used automatically by the OSA software instead of the usual gain history tables, if one exists for a given revolution. All the revolutions after 948 have an IC table because of aging and occasionally eccentric behaviour of the instruments. Some revolutions prior to 948 also have IC tables due to odd behaviour. Delivery of these files is constantly ongoing and users should always check that they have the latest IC/IMOD files before beginning an analysis. For a complete overview of the gain calibration of every revolution see http://www.spacecenter.dk/~oxborrow/sdast/GAINresults.html

The  $j_{-correction}$  script will automatically fill this parameter with the DOL of an available IC gain history table if one is available for the revolution to which the SCW belongs.

More details can be found in Section 3.2 and Appendix B.3.  $j_{cor}gain$  parameters included into the main script are given in Table 7.

For the quality of gain corrections of JEM-X, all users should look at the web-page http://www.spacecenter.dk/~oxborrow/sdast/GAINresults.html

| Name         | Type   | Description                                                   |
|--------------|--------|---------------------------------------------------------------|
| COR_gainHist | string | DOL of the Index Group with gain variation history JMXi-GAIN- |
|              |        | CAL-IDX. Empty string automatically takes the value of any IC |
|              |        | Gain History DOL.                                             |
|              |        | default: ""                                                   |
|              |        |                                                               |

| Table 7: | $j_cor_gain$ | parameters | included | into | the | $\operatorname{main}$ | script. |
|----------|--------------|------------|----------|------|-----|-----------------------|---------|
|----------|--------------|------------|----------|------|-----|-----------------------|---------|

| COR_gainModel | integer | With this parameter you choose the smoothing model to be applied.<br>possible values: |
|---------------|---------|---------------------------------------------------------------------------------------|
|               |         | -1 (default) Let the algorithm choose between the optimal model to be used.           |
|               |         | 0 Linear interpolation between gain history values.                                   |
|               |         | 1 Fixed gain parameters - obsolete. This value will automatically                     |
|               |         | default to model 2.                                                                   |
|               |         | 2 Exponential gain decay with linear segment immediately af-                          |
|               |         | ter switch. Models the normal time variation of gain slope in a revolution.           |
|               |         | 3 Non-trigger dependent model.                                                        |
|               |         | 4 Hardware trigger dependency in the smoothing. If there is                           |
|               |         | no significant trigger variation during the revolution, then the                      |
|               |         | program defaults back to model 3.                                                     |
|               |         | default: -1                                                                           |

#### 8.1.2 $j_{-}cor_{-}position$

The program works with the data received in Full & Restricted Imaging modes. With the use of the position mapping tables (see Appendix B.4)  $j_{-}cor_{-}position$  converts detector positions corrected for microstrip plate irregularities into absolute values.

This component also determines whether there are hotspots on the microstrip plate and flags all the events orginating in hotspot areas so that these events can be ignored by the rest of the science analysis. It also flags dubious events coming from dead anodes, inactive areas around the detector and areas around the calibration areas.

See Appendix C.1 for the description of  $j_{-correction}$  output.

# **8.2** *j*\_*gti*

This script builds Good Time Interval information from housekeeping data, information about satellite stability and data gaps. It calls the following executables to obtain the GTIs:

- gti\_create
- $gti_attitude$
- gti\_data\_gaps
- gti\_import
- gti\_merge

More information concerning the definition of the Good Time Intervals and the creation of user defined GTIs is given in the Introduction to the *INTEGRAL* Data Analysis, [1].

#### $\textbf{8.2.1} \quad gti\_create$

This program generates Good Time Intervals (see section 7.1 page 39) depending on housekeeping data and other parameters defining by a limit in a limit table ( the time is "bad" if the value of any parameter was out of limit).

Table 8: gti\_create parameters included into the main script.

| Name          | Type   | Description                        |
|---------------|--------|------------------------------------|
| GTLlimitTable | string | DOL of table with parameter limits |
|               |        | default: ""                        |

#### 8.2.2 gti\_attitude

A GTI is defined for each period of time where the pointing stability is better than the accepted tolerance . The spacecraft GTI is named ATTITUDE. For slews this GTI is always set to be good independent of any input data.

| Table 9: | $gti_{-}attitude$ | parameters | included | into | the | main | script. |
|----------|-------------------|------------|----------|------|-----|------|---------|
|----------|-------------------|------------|----------|------|-----|------|---------|

| Name            | Name         | Type | Description                                                                             |
|-----------------|--------------|------|-----------------------------------------------------------------------------------------|
| (main script)   | (executable) |      |                                                                                         |
| GTLattStability | AttStability | real | Accepted attitude variability [arc min]<br>possible values: 0. – 10800.<br>default: 3.0 |

#### $\textbf{8.2.3} \quad gti\_data\_gaps$

This program generates GTIs depending on the presence of the science data. A time is defined as "bad" if there are missing science packets.

The final GTI is written into the JEMX-1 or JEMX-2 index group and has the name DATA\_GAPS.

Table 10: gti\_data\_gaps parameters included into the main script.

| Name             | Name         | Type   | Description                      |
|------------------|--------------|--------|----------------------------------|
| (main script)    | (executable) |        |                                  |
| GTL_gtiJemxNames | JMX1_Mode    | string | Names of JEM-X GTIs to be merged |
|                  | JMX2_Mode    | string | default: ""                      |

#### 8.2.4 gti\_import

The *gti\_import* reads user GTI table and converts it to a table in ISDC format. The user GTI can be defined either in units of OBT, IJD, or UTC. The output is always in OBT. The user table can define either bad or good time intervals. The output time intervals are always good ones. For the definition of the ISDC Julian Date (IJD) and details of user GTIs creation see Introduction to the *INTEGRAL* Data Analysis, [1].

Table 11:  $gti_import$  parameters included into the main script.

| Name           | Name         | Type   | Description                          |
|----------------|--------------|--------|--------------------------------------|
| (main script)  | (executable) |        |                                      |
| GTI_gtiUser    | InGTI        | string | DOL of the input user GTI            |
|                |              |        | default: ""                          |
| GTL_TimeFormat | TimeFormat   | string | Time format to be used               |
|                |              |        | possible values: "IJD", "UTC", "OBT" |
|                |              |        | default: "OBT"                       |

| GTI_Accuracy | Accuracy | string | Accuracy used for OBT to IJD conversion and |
|--------------|----------|--------|---------------------------------------------|
|              |          |        | vice versa                                  |
|              |          |        | possible values: "any", "inaccurate",       |
|              |          |        | "accurate"                                  |
|              |          |        | default: "any"                              |

#### $\textbf{8.2.5} \quad gti\_merge$

This program merges zero, one or more GTIs to a new GTI. It is an AND operation: time in the result GTI is defined to be "good" if this time is in every input GTI defined as "good". It also filters times flagged as Bad Time Intervals (see Section 7.2).

| Name             | Name         | Type   | Description                                                   |
|------------------|--------------|--------|---------------------------------------------------------------|
| (main script)    | (executable) |        |                                                               |
| GTI_gtiJemxNames | JMX1_Mode    | string | Names of JEM-X GTIs to be merged                              |
|                  | JMX2_Mode    |        | default: ""                                                   |
| GTI_BTI_Dol      | BTI_Dol      | string | DOL of a bad time interval table.                             |
|                  |              |        | default: ""                                                   |
| GTI_BTI_Names    | BTI_Names    | string | Periods marked by a type of BTI listed in BTI_Names are       |
|                  |              |        | excluded from the analysis. Possible values are:              |
|                  |              |        | BAD_RESPONSE and                                              |
|                  |              |        | BAD_CONFIGURATION,                                            |
|                  |              |        | which are both excluded by default. The user wishing to       |
|                  |              |        | analyse data from a period affected by some BTI can remove    |
|                  |              |        | the BTI type from BTI_Names. However, in general the          |
|                  |              |        | result will be scientifically invalid, and this functionality |
|                  |              |        | must be used with extreme caution.                            |
|                  |              |        | default: "BAD_RESPONSE BAD_CONFIGURATION"                     |

| Table 12: | $gti\_merge$ | parameters | included | into | the | $\operatorname{main}$ | script. |
|-----------|--------------|------------|----------|------|-----|-----------------------|---------|
|-----------|--------------|------------|----------|------|-----|-----------------------|---------|

# **8.3** *j\_dead\_time*

This script derives a history of dead time values for each polling cycle (8 seconds) for a given JEM-X detector calling a single executable  $j\_dead\_time\_calc$ . There are no parameters specific to this level in jemx\_science\_analysis.par file.

#### 8.3.1 *j\_dead\_time\_calc*

The dead time used in standard scientific analysis is calculated from the housekeeping counters that keep track of the fate of every event processed by the on-board software. The time to read in all the detector signals for a single event depends on how quickly the event is discarded due to grey filtering, buffer loss or particle rejection. The time taken for each sort of processing is stored in JMXi-DEAD-MOD (see Table 33 in Appendix B). The read-in time is summed up for all the events to give DEADTIME in JMXi-DEAD-SCP - this deadtime only measures the time that the hardware is occupied with event handling and cannot take in new events and dead time due to buffer losses. A further dead time DEAD\_EFF is calculated that includes the effect of grey filter. This factor can be used to correct fluxes and countrates for all detector processing losses. These values however have only 8 secs resolution since this is the frequency of housekeeping packets, therefore, very rapidly varying strong sources must be treated offline for dead time.

Most analysis tools use the DEADTIME value in JMXi-DEAD-SCP and then add the effect of grey filter losses by looking up the grey filter value in the the JMXi\_INST-STA instrument status table. These grey filter values have a single event resolution that allows for somewhat better determination of the instantaneous

deadtime. This procedure does not however, replace the need for an offline deadtime analysis for very rapidly varying sources.

## 8.4 $j_{-}cat_{-}extract$

This script extracts from the ISDC catalogue list of sources relevant to the Science Window in question with the help of *cat\_extract* executable. It selects all the sources with fluxes known to be in the selected range and lying in the hollow cone (layer) defined by user. If fluxes are not specified then all sources are selected. It is possible to specify different flux criteria for different layers. Several layers can be mentioned in one call. More information on the ISDC catalogue you find in the Introduction to the *INTEGRAL* Data Analysis, [1].

In Table 13 you find the description of the parameters specific to the CAT\_I level.

| Name            | Type   | Description                            |
|-----------------|--------|----------------------------------------|
| CAT_I_refCat    | string | DOL of Reference Catalog               |
|                 |        | default: "\${ISDC_REF_CAT}"            |
| CAT_I_usrCat    | string | DOL of User Catalog                    |
|                 | _      | default: ""                            |
| CAT_I_radiusMin | string | Low limit for the position selection.  |
|                 |        | default: "0 2.4"                       |
| CAT_I_radiusMax | string | High limit for the position selection. |
|                 |        | default: "2.4 5.8"                     |
| CAT_I_fluxDef   | string | Column used for flux selection.        |
|                 |        | possible values:                       |
|                 |        | "0" – No flux selection                |
|                 |        | "1" – JMXi_FLUX_1 column is used       |
|                 |        | "2" – JMXi_FLUX_2 column is used       |
|                 |        | default: "0"                           |
| CAT_I_fluxMin   | string | Low limit for flux selection.          |
|                 |        | default: ""                            |
| CAT_I_fluxMax   | string | High limit for flux selection.         |
|                 |        | default: ""                            |
| CAT_I_class     | string | Object class of sources to select      |
|                 |        | default: ""                            |
| CAT_I_date      | real   | IJD for the public data.               |
|                 |        | possible values:                       |
|                 |        | <0 == all public;                      |
|                 |        | 0 == all private;                      |
|                 |        | >0 according to 'DAY_ID'               |
|                 |        | default: "-1"                          |

Table 13: *j\_cat\_extract* parameters included into the main script

# 8.5 *j\_image\_bin*

This script creates shadow grams in several, user-defined energy bands, calling the  $j_ima\_shadowgram$  executable once for each band.

Standard coordinates retain the original detector square grid. The shadowgrams are made in a normal coordinate system when the hidden parameter  $BIN_I\_shdType$  is equal to 3. The imaging component  $j\_ima\_iros$  requires  $BIN_I\_shdType$  to be 2 (the default value in OSA 5.0). In that case the shadowgram is given with raw event positions i.e. no on-ground correction has been applied.

Parameters specific to the BIN\_I level are given in Table 14.

#### 8.5.1 $j_{-ima\_shadowgram}$

This executable reads the events from the imaging formats (FULL or REST) and sorts them according to their position into a 2D histogram – the shadowgram. The grey filter G and dead time D combined correction factor is evaluated at this step and brought as keyword in the FITS representation of the shadowgram. TELAPSE time interval from boginning to and of data window.

| TELAPSE  | time interval from beginning to end of data window             |
|----------|----------------------------------------------------------------|
| ONTIME   | sum of the good-time-intervals (GTI)                           |
| EXPOSURE | ONTIME corrected for greyfilter and deadtime                   |
| DEADC    | effective fraction surviving when only dead time is considered |

An example of a shadowgram with a very strong on-axis source is shown in Fig. 23. The central part of the mask is imaged on the detector and the similarity with the mask pattern (Fig. 5) can be noticed.

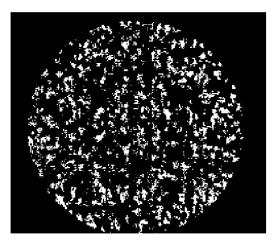



Figure 23: A shadowgram with a strong on-axis source and negligible background.

| Name              | Name         | Type    | Description                                         |
|-------------------|--------------|---------|-----------------------------------------------------|
| $(main \ script)$ | (executable) |         |                                                     |
| nChanBins         | nChanBins    | integer | Number of energy-resolved shadowgrams to create. If |
|                   |              |         | < 1, shadowgrams are created in standard bands.     |
|                   |              |         | possible values: $-7 - 100$                         |
|                   |              |         | default: 4                                          |
| chanLow           | chanLow      | string  | Lower channel boundaries for shadowgrams            |
|                   |              |         | default: "46 83 129 160"                            |
| chanHigh          | chanHigh     | string  | Upper channel boundaries for shadowgrams            |
|                   |              |         | default: "82 128 159 223"                           |
| timeStart         | timeStart    | real    | Start of time interval [IJD]                        |
|                   |              |         | (-1 - use swgDOL bounds)                            |
|                   |              |         | default: -1.                                        |
| timeStop          | timeStop     | real    | End of time interval [IJD]                          |
|                   |              |         | (-1 - use swgDOL bounds)                            |
|                   |              |         | default: -1.                                        |
| BIN_I_evtType     | evtType      | integer | Event type                                          |
|                   |              |         | possible values:                                    |
|                   |              |         | 0 - FULL,                                           |
|                   |              |         | 1 - REST,                                           |
|                   |              |         | -1 - both                                           |
|                   |              |         | default: -1                                         |

Table 14:  $j\_image\_bin$  parameters included into the main script

| BIN_L_shdType     | shdType     | integer | Type of shadowgram<br>possible values:<br>1 – standard<br>2 – raw-standard<br>3 – regular<br>default: 2 |
|-------------------|-------------|---------|---------------------------------------------------------------------------------------------------------|
| BIN_L_shdRes      | shdRes      | string  | DOL of the output shadowgrams<br>default: ""                                                            |
| BIN_I_rowSelect   | rowSelect   | string  | CFITSIO selection string on events<br>default: "&&STATUS<256" <sup>15</sup>                             |
| BIN_I_gtiNames    | gtiNames    | string  | Names of GTI tables to be used<br>default: ""                                                           |
| BIN_I_chanLowDet  | chanLowDet  | string  | Three lower channel boundaries for shadowgrams for<br>source detection<br>default: "46 96 135"          |
| BIN_1_chanHighDet | chanHighDet | string  | Three upper channel boundaries for shadowgrams for<br>source detection<br>default: "95 134 178"         |

# 8.6 $j_{-}imaging$

This component deconvolves the shadowgrams to make sky images, performs a search for sources and derives flux estimates.

Before OSA5 these tasks were divided into three components (j\_ima\_basic\_recon, j\_ima\_src\_find, and j\_ima\_cor\_intensity) but the new component j\_ima\_iros does it all. The advantages are e.g. more reliable flux estimates, better images, and better vignetting correction.

This script calls the following executables:

- *j\_ima\_iros*
- $q_identify_srcs$

Parameters specific to the IMA level are given in Table 15.

Table 15:Parameters specific to the IMA level

| Name                | Type    | Description                                                                                 |
|---------------------|---------|---------------------------------------------------------------------------------------------|
| IMA_makeNewBPL      | boolean | Do you want to create a new backprojection file ?<br>default: no                            |
| IMA_newBackProjFile | string  | Base name of new backprojection file default: ""                                            |
| IMA_detAccLimit     | integer | Acceptance limit in JMXi-DETE-MOD data structure. Possible values: 1 – 65535 default: 16384 |
| IMA_skyImageDim     | integer | Sky image dimension. Possible values: 1:255, 2:511.<br>default: 2                           |

 $^{15}$ Note that the string will be concatenated to an existing radius selection so that the parameter string must begin with a logical operator, such as &&

| IMA_useDeadAnodes     | boolean | Do you want to include dead anodes areas ?<br>default: no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| IMA_maxNumSources     | integer | Max number of sources in IROS loop default: 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| IMA_edgeEnhanceFactor | real    | Edge enhancement factor. It is used to convert the sky-images to significance maps by amplifying the peaks near the edge relative to those near the center default: 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| IMA_loopLimitPeak     | real    | Fractional peak power to stop IROS loop default: 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| IMA_detSigSingle      | real    | Detection significance for source acceptance default: 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| IMA_skyRadiusFactor   | real    | Sky radius limit factor<br>default: 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| IMA_radiusLimit0      | real    | Detector radius limit $E < 6 \text{ keV} \text{ (mm)}$<br>default: 120.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| IMA_radiusLimit1      | real    | Detector radius limit $6 < E < 12$ keV (mm) default: 120.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| IMA_radiusLimit2      | real    | Detector radius limit $12 < E < 20 \text{ keV} \text{ (mm)}$ default: 117.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| IMA_radiusLimit3      | real    | Detector radius limit $E > 20 \text{ keV} \text{ (mm)}$<br>default: 110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| IMA_interactionDepth  | real    | Mean depth of interaction in the detector (mm) default: 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| IMA_hotPixelLimit     | real    | Hot pixel limit factor above average default: 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| IMA_skyImagesOut      | string  | Type of output sky images. There are the following types:<br>RECTIFIED: Rectified (cleaned) intensity maps (in<br>counts/cm <sup>2</sup> /s).<br>VARIANCE: Variance maps.<br>RECONSTRUCTED: Reconstructed Residual+Sources maps (in<br>counts/cm <sup>2</sup> /s) which only differ from the RECTIFIED maps if<br>sources have been found.<br>RAWINTENSITY: Raw intensity (strength) maps (in counts),<br>for which the vignetting correction is not applied.<br>RESIDUAL: Intensity map (in counts/cm <sup>2</sup> /s) after all found<br>source contributions have been subtracted.<br>EXPOSURE: The exposure map<br>PIF: activate the PIF-weighted image generation algorithm (not<br>to be used with mosaic_spec)<br>Only the first five letters are required.<br>default: "RECONSTRUCTED, VARIANCE" |  |
| IMA_dolBPL            | sting   | DOL of backprojection file list default: ""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

| IMA_bkgShdDOL     | string  | DOL of background shadowgrams<br>default: ""                                 |
|-------------------|---------|------------------------------------------------------------------------------|
| IMA_signifLim     | integer | Minimum number of pixels to make a contribution to a sky image default: "25" |
| IMA_illumNorm     | integer | Flag for special re-normalization default: "0"                               |
| IMA_colHreduc     | real    | [mm] Reduction of collimator height for BPL production default: "0."         |
| IMA_detImagesOut  | boolean | Should the images used for source detection be in output?<br>default: "yes"  |
| IMA_userImagesOut | boolean | Do you want the user defined images to be written?<br>default: "n"           |
| IMA_pixelFold     | integer | Type of pixelfold 0:none, 1:NL, 2:NJW, 3:NL 1 D default: "1"                 |
| IMA_useTrace      | boolean | Flag for tracing function calls<br>default: "no"                             |
| IMA_tracestring   | string  | Control string for use of trace<br>default: "0123456789ABCDEF"               |

#### **8.6.1** *j\_ima\_iros*

The j\_ima\_iros software package has been developed to provide two main outputs:

- sky-images (and corresponding variance maps) derived from JEM-X shadowgrams.
- a list of source candidates extracted from the sky images by an "Iterative Removal Of Sources" (IROS-) algorithm.

j\_ima\_iros processes data (shadowgrams) from one science window at a time. Combining the sky images or the source candidate lists must be done by subsequent software packages. j\_ima\_iros can analyze a maximum of 15 shadowgrams (f.i. 15 separate energy bands) from one science window. For an initial survey of the observed sources it is best to divide the data into a limited number of energy bands, e.g. four bands.

j\_ima\_iros generates its sky images by a simple backprojection algorithm. The necessary information for this step is to see if the path from the detector pixel to the sky pixel is free or blocked by e.g. collimator or mask. Since the geometry of the JEM–X detector with its collimator is complex the raytracing from shadowgram pixels to sky image pixels is quite time consuming.

Therefore the Aperture Response Function is calculated off line by a separate set of subroutines. For every detector pixel (= shadowgram pixel) a list is generated containing all sky-image pixels potentially illuminating this detector pixel. Even when stored in compressed format these "backprojection lists" are of substantial size: about 375 Mbyte (for each JEM–X unit) for sky images with 511x511 pixels of 1.5 arcmin. The advantage is that the backprojection process (which must be repeated many times during the IROS-process) is quite fast - and, very important, the duration of the backprojection step is independent of the steadily increasing complexity of the raytracing model required by our improved understanding of the intricacies of JEM–X. The backprojection lists are stored as separate IC files JMXi-BPL.-GRP under the general IC tree.

The search for sources is conducted in three predefined energy bands irrespective of the user selection of energy bands. Source results will be reported for all energy bands. Sources found in two or three of the search bands will define a 'basic source set' for this observation<sup>16</sup>.

Optionally, the user may specify a 'user catalog' (parameter: usrCat) to enhance and control the performance of j\_ima\_iros. A subset of the sources in the catalog will automatically be selected corresponding to the current field of view.

For strong source candidates found during the first source detection phase of j\_ima\_iros a catalog match will be searched. If found, the catalog coordinates will be used during the IROS process.

The user may want to force j\_ima\_iros to analyze a source which is not detected with sufficient strength to be included in the basic source set. This can be done by assigning specific values to the 'FLAG' column of the user catalog.

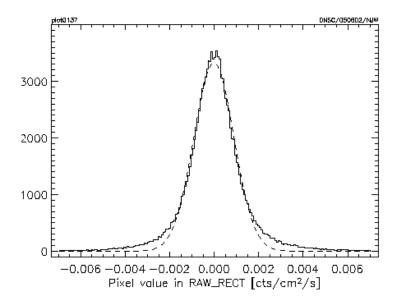
A value of one will force j\_ima\_iros to derive flux values for the source. The flux will be derived from a fit including the basic source set plus the desired source. If several sources are marked in this way, a separate fit is performed for each source together with the basic source set.

A value of three for the FLAG will force j\_ima\_iros to include this source in the basic source set. It can be useful for very strong sources near the edge of the FOV that are not detected because they are too close to the edge or the exposure time is too short. But beware! Forcing irrelevant sources into the IROS process will normally deteriorate the fit.

The pixel size in the sky image is  $1.5 \operatorname{arcmin}$  and the dimensions are  $511 \times 511$  pixels.

The distribution of pixel values in the reconstructed and cleaned image (RECONSTRUCTED) is not Gaussian (see Fig. 24) which implies that the detection significance limit should be set somewhat higher e.g. to 12, than a "number of sigma's"

The presence of the collimator introduces a vignetting of off-axis sources. Also at off-axis angles greater that 2.4 degrees a source is not visible through the mask from the entire detector surface. These two effects together form the vignetting. The vignetting or throughput factor as a function of angle in two direction is shown in Fig. 25. The quadratic cell shape of the collimator introduces the deviation from circular symmetry.


With OSA5.1 images it was realized that the flux determined from the images was a decreasing function of the off-axis angle. This effect is corrected in OSA6 by applying a correction map placed in the BPL IC files to the images before they are written to disk. Therefore the offline tool 'mosaic\_spec' can be used to extract source spectra from j\_ima\_iros images as well as from mosaic images.

#### 8.6.2 q\_identify\_srcs

 $q\_identify\_src$  calculates the distance d between each pair consisting of an expected catalogue source and a source found in the FOV by the ISSW. This distance and the error radii of the sources  $r_1, r_2$  are used to calculate the relative distance,  $q = d/\sqrt{r_1^2 + r_2^2}$ . It is therefore essential that the quoted position error has a meaningful value. The relative distances are then stored in an array. Two new arrays are then created one ranking each catalogue source with  $q \leq \text{relDist}$  (the largest value of relative distance considered when matching sources) for its proximity to each found source, and the other ranking each found source with  $q \leq \text{relDist}$  for its proximity to each catalogue source. These two arrays are compared and five classes of source matches are found:

• **Good matches:** The found and catalogue source are the best fit to each other alone (relative distance between the match sources is much less than 1.

 $<sup>^{16}</sup>$  Additionally, sources found with very high significance (see section 6.6.2) in only one band will be added to the' basic source set.



- Figure 24: The distribution of pixel values in a RECTIFIED image with only one or two weak sources around the center of the FOV (thick histogram). A Gaussian fit is shown with the dashed curve and it is evident that the wings of the distribution are wider that the fit.
  - **Confused Sources:** Two found sources are equally good fits to a particular catalogue source (within the slackness allowed by **distFuzz**, *i.e.*, fractional difference in two relative distances that can be considered insignificant when making a match, and **relDist**) one of them could be a new source.
  - Multiple Identification: One found source can be equally well identified with two (or more) catalogue sources (within the slackness allowed by **distFuzz** and **relDist**).
  - New Source: A found source that cannot be matched to any catalogue source.
  - Not Found Source: A catalogue source that couldn't be matched to any of the found sources.

In the case of the two ambiguous categories (Multiple and Confused) the program makes no attempt to separate sources further or resolve conflicts between various possible matches - this should be done by a human. More details on the format of the output result is given in Appendix C.6.2.

| Name          | Type    | Description                                                                     |
|---------------|---------|---------------------------------------------------------------------------------|
| IMA_relDist   | real    | This is a parameter that sets the allowed separation between                    |
|               |         | CAT-sources and RES-sources that are to be considered as the                    |
|               |         | 'same'.                                                                         |
|               |         | relDist is calculated from:relDist= $d/\sqrt{r_1^2 + r_2^2}$ . Here d is a dis- |
|               |         | tance between the sources and $r_1$ and $r_2$ are the error radii.              |
|               |         | default: 1.5                                                                    |
| IMA_fluxLimit | real    | Lower flux limit for alerts of unfound sources $[Counts/cm/s^2]$ .              |
|               |         | default: 0.0                                                                    |
| IMA_searchRad | real    | Range of search grid (in degrees) around nominal found source                   |
|               |         | positions                                                                       |
|               |         | default: 0.25                                                                   |
| IMA_gridNum   | integer | Number of grid steps on one side of search grid                                 |
|               |         | default: 25                                                                     |

Table 16: q\_identify\_srcs parameters included into the main script

| IMA_distFuzz | real | Fractional difference in the relative distance of two found sources that allows them still to be considered equally good fits for a catalogue source. |
|--------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |      | default: 0.15                                                                                                                                         |

### 8.7 *j\_src\_extract\_spectra*

This script derives JEM-X countrate spectra for all sources found in the current Science Window. It calls a single executable  $j_{reform\_spectra}$ .

### 8.7.1 *j\_reform\_spectra*

Since OSA v.8.0, extraction of source spectra is made through  $j_ima_iros$ .  $j_reform_spectra simply reformats the fluxes in the user-defined energy bins. Please see <math>j_ima_iros$  (Sect. 8.6.1) for more detail.

### 8.8 *j\_src\_extract\_lc*

This application extracts energy-binned light curves for each found point source in the FOV. Background subtraction is an integral part of the data extraction. The only used executable is  $j\_src\_lc$ .

### **8.8.1** *j\_src\_lc*

Creates binned lightcurves for each found source in FOV. The output data structure contains a countrate light curve for a given source and a given energy range of the JEM-Xi instrument.

| Name               | Type    | Description                                                     |  |  |
|--------------------|---------|-----------------------------------------------------------------|--|--|
| LCR_timeStep real  |         | Binning time [s] for lightcurves                                |  |  |
|                    |         | default: 10.                                                    |  |  |
| LCR_evtType        | integer | Event type                                                      |  |  |
|                    |         | possible values:                                                |  |  |
|                    |         | 0 - FULL,                                                       |  |  |
|                    |         | 1 - REST,                                                       |  |  |
|                    |         | -1 - both                                                       |  |  |
|                    |         | default: -1                                                     |  |  |
| LCR_precisionLevel | integer | Speed - precision level, see more details in Section 8.7.1      |  |  |
|                    |         | possible values:                                                |  |  |
|                    |         | 0 – basic approach                                              |  |  |
|                    |         | 20 – more detailed approach                                     |  |  |
|                    |         | default: 20                                                     |  |  |
| LCR_tAccuracy      | integer | Time Correlation accuracy                                       |  |  |
|                    |         | possible values:                                                |  |  |
|                    |         | 0 - high,                                                       |  |  |
|                    |         | 1 - low,                                                        |  |  |
|                    |         | 3 - any                                                         |  |  |
|                    |         | default: 3                                                      |  |  |
| LCR_useRaDec       | boolean | Use sky coordinates (Ra,Dec) instead of instrument coordinates? |  |  |
|                    |         | default: y                                                      |  |  |
| LCR_rowSelect      | string  | CFITSIO selection string on events                              |  |  |
|                    |         | default: ""                                                     |  |  |

Table 17: *j\_src\_lc* parameters included into the main script

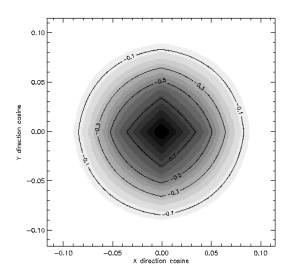



Figure 25: Simplified version of the vignetting array.

### 8.9 *j\_bin\_spectra*

This script bins events or Spectral Mode data without deconvolution. It calls the following executables:

- *j\_bin\_evts\_spectra*
- *j\_bin\_spec\_spectra*
- $j\_bin\_bkg\_spectra$

The *j*-bin-spectra deals with background issues in a different fashion than the image reconstruction processes. There is no attempt at subtracting the background during the processing, instead for each generated JEM-X spectrum a corresponding background spectrum or lightcurve is produced by binning of the background model information, using the same binning as the measured spectra.

### $\textbf{8.9.1} \quad j\_bin\_evts\_spectra$

This executable generates detector spectra for a single JEM-X unit from Full Imaging, Restricted Imaging or Spectral/Timing events by binning the event data.

A series of spectra resolved in time or phase over a given period can be produced.

| Name                | Name         | Type   | Description                        |
|---------------------|--------------|--------|------------------------------------|
| (main script)       | (executable) |        |                                    |
| BIN_S_rowSelectEvts | rowSelect    | string | CFITSIO selection string on events |
|                     |              |        | default: ""                        |

Table 18:  $j\_bin\_evts\_spectra$  specific to the BIN\_S level

| BIN_S_evtType | evtType int |  | Data format to bin possible values:<br>-1 - all,<br>0 - FULL,<br>1 - REST,<br>2 - SPTI,<br>4 - SPEC<br>default: -1 |  |
|---------------|-------------|--|--------------------------------------------------------------------------------------------------------------------|--|
|---------------|-------------|--|--------------------------------------------------------------------------------------------------------------------|--|

#### 8.9.2 *j\_bin\_spec\_spectra*

This executable generates time resolved spectra for a single JEM-X detector by rebinning data in pure spectrum format to spectra.

The output is written to **JMXi-SPEC-DSP** which has the same structure as the data structures described in Table 52.

| Table 19: <i>j_bin_evts_spectra</i> specific to the BIN_S level |
|-----------------------------------------------------------------|
|-----------------------------------------------------------------|

| Name                | Name         | Type    | Description                                            |
|---------------------|--------------|---------|--------------------------------------------------------|
| (main script)       | (executable) |         |                                                        |
| nPhaseBins          | nPhaseBins   | integer | Number of phase bins $(N < 0 = abs(N))$ equally spaced |
|                     |              |         | bins)                                                  |
|                     |              |         | default: 0                                             |
| phaseBins           | phaseBins    | string  | Phase bin sizes, separated by space                    |
|                     |              |         | default: ""                                            |
| BIN_S_rowSelectSpec | rowSelect    | string  | CFITSIO selection string on spectrum mode data         |
|                     |              |         | default: ""                                            |

### 8.9.3 $j_bin_bkg_spectra$

This executable generates time resolved spectra for a single JEM-X detector by rebinning background model data to spectra.

| Table 20: | $j\_bin\_bkg\_spectra$ | specific to th | e BIN_S level |
|-----------|------------------------|----------------|---------------|
|-----------|------------------------|----------------|---------------|

| Name          | Name         | Type    | Description        |
|---------------|--------------|---------|--------------------|
| (main script) | (executable) |         |                    |
| BIN_S_evtType | evtType      | integer | Data format to bin |
|               |              |         | possible values:   |
|               |              |         | -1 - all,          |
|               |              |         | 0 - FULL,          |
|               |              |         | 1 - REST,          |
|               |              |         | 2 - SPTI,          |
|               |              |         | $4-\mathrm{SPEC}$  |
|               |              |         | default: -1        |

# **8.10** *j*\_*bin*\_*lc*

The  $j_bin_lc$  script bins event data into lightcurves in different energy bands. The binning format is determined by input parameters to the executables. Empty fields are also binned for use in the background model catalogue.

This script deals with background issues in a different fashion than the image reconstruction processes. There is no attempt at subtracting the background during the processing, instead for each generated JEM-X light curve a corresponding background light curve is produced by binning of the background model information, using the same binning as the measured light curves. It calls the following executables:

- $j\_bin\_evts\_lc$
- $j_bin_rate_lc$
- $j_bin_bkg_lc$

8.10.1 *j\_bin\_evts\_lc* 

Bins JEM-X event data to lightcurves.

| Name            | Name             | Type    | Description                                               |
|-----------------|------------------|---------|-----------------------------------------------------------|
| (main script)   | (executable)     |         |                                                           |
| BIN_T_rowSelect | rowSelect        | string  | CFITSIO selection string on events                        |
|                 |                  |         | default: ""                                               |
|                 |                  |         |                                                           |
| $BIN_T_evtType$ | evtType          | integer | Data format to bin                                        |
|                 |                  |         | possible values:                                          |
|                 |                  |         | -1 - all,                                                 |
|                 |                  |         | 0 - FULL,                                                 |
|                 |                  |         | 2 - SPTI,                                                 |
|                 |                  |         | 3 – TIME                                                  |
|                 |                  |         | default: -1                                               |
|                 |                  |         |                                                           |
| nChanBins       | nChanBins        | integer | Number of channel bins                                    |
|                 |                  |         | default: 4                                                |
| chanLow         | chanLow          | string  | Lower channel bins (numbers separated by spaces)          |
|                 |                  |         | default: "46 83 129 160"                                  |
| chanHigh        | ${\bf chanHigh}$ | string  | Upper channel bins (numbers separated by spaces)          |
|                 |                  |         | default: "82 128 159 223"                                 |
| LCR_timeStep    | timeStep         | real    | Binning time for lightcurve (sec)                         |
|                 |                  | _       | default: "10"                                             |
| timeStart       | timeStart        | real    | Time in IJD of start of first time bin ( $< 0 = $ use SWG |
|                 |                  |         | start)                                                    |
|                 |                  |         | default: "-1"                                             |
| timeStop        | timeStop         | real    | Time in IJD of end of last time bin ( $< 0 =$ use SWG     |
|                 |                  |         | end)                                                      |
|                 | <b>D1 D</b> 1    |         | default: "-1"                                             |
| nPhaseBins      | nPhaseBins       | integer | Number of phase bins $(N < 0 = abs(N))$ equally spaced    |
|                 |                  |         | bins)                                                     |
|                 | 1                |         | default: "O"                                              |
| phaseBins       | phaseBins        | string  | Phase bin sizes, separated by space (e.g: 0.1 0.2 0.3     |
|                 |                  |         | )                                                         |
|                 |                  |         | default: ""                                               |

### $\textbf{8.10.2} \quad j\_bin\_rate\_lc$

Creates full-detector light curve from RATE data.

Table 22: *j\_bin\_rate\_lc* parameters specific to the BIN\_T level

| Name          | Name         | Type    | Description                                             |
|---------------|--------------|---------|---------------------------------------------------------|
| (main script) | (executable) |         |                                                         |
| LCR_timeStep  | timeStep     | real    | Binning time for lightcurve (sec)                       |
|               |              |         | default: "10"                                           |
| timeStart     | timeStart    | real    | Time in IJD of start of first time bin ( $<0$ = use SWG |
|               |              |         | start)                                                  |
|               |              |         | default: "-1"                                           |
| timeStop      | timeStop     | real    | Time in IJD of end of last time bin ( $<0$ = use SWG    |
|               |              |         | end)                                                    |
|               |              |         | default: "-1"                                           |
| nPhaseBins    | nPhaseBins   | integer | Number of phase bins $(N < 0 = abs(N)$ equally spaced   |
|               |              | _       | bins)                                                   |
|               |              |         | default: " 0 "                                          |
| phaseBins     | phaseBins    | string  | Phase bin sizes, separated by space (e.g. 0.1 0.2 0.3   |
| -             | -            |         | )                                                       |
|               |              |         | default: ""                                             |

### 8.10.3 *j\_bin\_bkg\_lc*

Rebin background model data to background lightcurves. None of the parameters of  $j\_bin\_bkg\_lc$  are included into the main script. The behavior of this program is defined by the outputs of  $j\_bin\_evts\_lc$  and  $j\_bin\_rate\_lc$ .

# 8.11 Observation group level analysis

### **8.11.1** *j\_ima\_mosaic*

This executable combines input sky maps produced by j\_ima\_iros to make JEM-X mosaic images in a single FITS file (named by default jmxi\_mosa\_ima.fits) comprising each energy band found in the input observation group or selected by the user.

The input intensity IMATYPE (RECONSTRUCTED or RECTIFIED or RAWINTENSITY) is selected by use of the parameter "mapSelect". Note that if the user wants to extract fluxes from the image, only "RECONSTRUCTED" (recommended) or "RECTIFIED" make sense. There are four parameters defining the mosaic skymaps produced in the output file so it can have, for each energy band, up to four image extensions (depending on the chosen options) showing in the following respective order:

- 1. RECONSTRUCTED (default) or RECTIFIED or RAWINTENSITY (depending on the input intensity IMATYPE; see above): it is the weighted intensity map (counts/cm<sup>2</sup>/s) produced by use of the parameter "viewIntens",
- 2. VARIANCE: the weighted variance map (use "viewVar"),
- 3. SIGNIFICANCE: the significance map (use "viewSig") defined as the intensity divided by the square root of the variance at each pixel.
- 4. EXPOSURE: the effective exposure times (use "viewTime") expressed in seconds taking account of the dead time, grey filter effects and vignetting of the JEM-X instruments (Notice: the vignetting used is normalised to 1 at the center of JEM-X FoV so as this corresponds to an effective detector aera of about 70 cm2 in average, depending on the actual energy range). With the latter option an additional map is also produced in the last extension OBS\_TIME of the output file that shows the accumulated raw observation times (in seconds).

If sky coordinates (RAcenter, DECcenter) are given as parameters to define the center of the mosaic map, an ordered list of the input images as a function of their respective weights at the given coordinates is displayed for each energy band in the log file.

Starting from OSA10 it is possible (switching the new parameter view\_nb to "yes") to output in a separate extension the number of SCWs contributing to each pixel of the mosaic. This new image will be of type NB\_SING, and will be the last extension of the mosaic fits file.

 $j_{-ima\_mosaic}$  can combine any set of JEM-X mosaics, even if they have been obtained with different units. It is however mandatory that the user must attach all the requested mosaics to a group. For instance, if the user wants combine mosaics from the three OSA analyses: mysrc\_1\_jmx1, mysrc\_2\_jmx1, mysrc\_3\_jmx2, the user shall type:

```
dal_create mos_group.fits ""
dal_attach mos_group.fits obs/mysrc_1_jmx1/jmx1_mosa_ima.fits
    obs/mysrc_2_jmx1/jmx1_mosa_ima.fits
    obs/mysrc_3_jmx2/jmx2_mosa_ima.fits "" ""
```

("" in the first line indicates that we use the default template, which is a group; the final "" "" represents two empty child parameters of dal\_attach; indeed dal\_attach can attach up to five children in a single invocation).

Now the group is ready, and one can call *j\_ima\_mosaic*:

#### j\_ima\_mosaic inObsGrp=mos\_group.fits outfile=combined\_mosaic.fits moscomb=y

The moscomb parameter is very important, as it tells  $j_ima_mosaic$  that we are trying to combine mosaics. The user can use either JMX1 or JMX2.

 $j_{ima\_mosaic}$  can now produce mosaics either in the default tangential projection or using AIToff-Hammer projection (useful in particular when mosaicking large parts of the sky, such as for the Galactic Plane Scans). AIToff-Hammer projection can be selected with the parameter IMA2\_AITproj="yes".

| Name                   | Type   | Description                                               |
|------------------------|--------|-----------------------------------------------------------|
| inObsGrp               | string | DOL of observation group                                  |
|                        |        | default ""                                                |
| mapSelect              | string | Default for Reconstructed (Residual+Sources) Inten-       |
|                        |        | sity maps, else RECTI for Rectified Intensity maps or     |
|                        |        | RAWIN for Raw Intensity maps                              |
|                        |        | default "RECON"                                           |
| dolBPL                 | string | DOL of the vignetting maps, e.g.,                         |
|                        |        | //ic/jmx1/rsp/jmx1_bpl_grp_0002.fits[JMX1-                |
|                        |        | DMAP-BPL]                                                 |
|                        |        | default""                                                 |
| radiusSelect           | real   | Input images selection radius in deg                      |
|                        |        | default "5"                                               |
| eminSelect             | real   | Minimum energy (keV) to select energy interval            |
| ~ .                    |        | default "0"                                               |
| emaxSelect             | real   | Maximum energy (keV) to select energy interval            |
|                        |        | default "80"                                              |
| diameter               | real   | Diameter in degrees of the mosaic image; 0 allows to      |
|                        |        | fit the size from the angle between input images, $< 0$ : |
|                        |        | may be used to force larger mosaics                       |
|                        |        | default "0"                                               |
| $\operatorname{cdelt}$ | real   | Pixel size in degrees at mosaic center                    |
|                        |        | default "0.026"                                           |
| RAcenter               | real   | Center of the mosaic image Right Ascension in degrees     |
|                        |        | (if $< 0$ use the computed middle position of the mo-     |
|                        |        | saic)                                                     |
|                        |        | default "-1"                                              |

| Table | 23:       | $j_ima_i$ | mosaic | parameters |
|-------|-----------|-----------|--------|------------|
| Table | <b></b> . | 1=011000= |        | paramotors |

| DECcenter  | real    | Center of the mosaic image Declination in degrees (not used if RA<br>center $<0)$                           |
|------------|---------|-------------------------------------------------------------------------------------------------------------|
|            |         | default "0"                                                                                                 |
| outfile    | string  | Mosaic FITS file prefix name (optional)                                                                     |
|            |         | default ""                                                                                                  |
| viewTime   | boolean | Create total exposure Time map? (if Y: produce both<br>raw exposure time map and energy dependent effective |
|            |         | exposure maps)                                                                                              |
|            |         | default "Y"                                                                                                 |
| viewIntens | boolean | Create raw Intensity map?                                                                                   |
|            |         | default "Y"                                                                                                 |
| viewVar    | boolean | Create Variance map?                                                                                        |
|            |         | default "Y"                                                                                                 |
| viewSig    | boolean | Create Significance map?                                                                                    |
|            |         | default "Y"                                                                                                 |
| view_nb    | boolean | Create a map that shows the number of input images                                                          |
|            |         | contributing to each pixel?                                                                                 |
|            |         | default "N"                                                                                                 |
| AITproj    | boolean | Produce map in galactic coordinates using AIToff-                                                           |
| 1 0        |         | Hammer projection?                                                                                          |
|            |         | default "N"                                                                                                 |
| print_ScWs | boolean | List input Science Windows in mosaic headers?                                                               |
| F          |         | default "N"                                                                                                 |
| chatter    | integer | Level of test output                                                                                        |
|            | mucger  | default "2"                                                                                                 |
|            |         |                                                                                                             |

### 8.11.2 src\_collect

This executable combines source data obtained by the imaging analysis for individual Science Windows into a single table covering an Observation Group. It is possible to retrieve only selected results.

| Name            | Name         | Type    | Description                                               |
|-----------------|--------------|---------|-----------------------------------------------------------|
| (main script)   | (executable) |         |                                                           |
| IMA2_srcFileDOL | results      | string  | DOL of the output source list mosaic                      |
|                 |              |         | default:                                                  |
| IMA2_srcselect  | select       | string  | CFITSIO selection string applied to input tables default: |
| IMA2_srcattach  | attach       | boolean | Attach resulting table to group?<br>default: n            |

Table 24: src\_collect parameters specific to the IMA2 level

#### 8.11.3 j\_ima\_src\_locator

 $j\_ima\_src\_locator$  is a tool to locate point sources in an image. It is included in the OSA 7 distribution but is it is not part of the pipeline.

The primary goal of this tool is to analyze images from JEM-X made by  $j_{ima_iros}$  or  $j_{ima_mosaic}$  but it can also be used as a generic tool for a FITS image file. The main condition is that the PSF measured in pixels does not vary significantly over the image.

Currently *j\_ima\_src\_locator* operates on a single image, but the functionality to get the images from a DAL

observation group (OG), a DAL science window group (SWG), or a DAL index table (IDX) is being prepared.

### Significance map

The starting point for the search for sources is the significance map. If the image is accompanied by a significance map this can be given as a parameter with its DOL.

### Detection significance of sources

It is assumed that the significance given in the significance map is evaluated pixel by pixel e.g. based on the number of counts that contribute to each image pixel. The significance of an excess in a pixel in the image is evaluated as the number of excess counts divided by the square-root of the variance (number of sigmas). In order to deal with the fact that the signal from a source is distributed over several adjacent pixels – the number is given by the PSF – a better source significance evaluation is done by combining several pixels around the source.

The distribution of significance values in the map is analyzed and a suggested value for the parameter 'detsigMin' is given in the log file (search for the string 'Suggest').

### Variance map

If the search for a significance map has failed the alternative is to use a variance map. For an individual image it can be given by parameter as a DOL. The significance map is constructed by dividing the input image with the 'local RMS' or the square root of the variance map.

### $Bootstrap \ variance$

In the case of a missing variance map then the 'local RMS' map (square root of the variance) is built by finding the RMS value by a sliding box excluding the pixels that are the highest contributors to the RMS. This method will reduce the effect of the extraordinarily high values of the RMS if there is a source inside the sliding (square) box.

### Source fitting

Once a source candidate has been spotted a gaussian fit with both position, sigma and amplitude as free parameters is done around the initial position in the intensity image and both the derived sigma and the peaksize are reported. The best source position is given as the fitted peak position.

Currently there is no way to e.g. freeze the width of the PSF.

### $Output\ data\ structure$

The output data structure is named: JMX1-SLOC-RES and is similar to JMXi-SRCL-RES which makes it possible to run e.g. q\_identify\_srcs and cat2ds9. There are some extra columns with additional information such as SIGMA (result of fitting), PEAKSIZE ('volume' of peak as fitted),

| Name   | Type   | Description                                             |
|--------|--------|---------------------------------------------------------|
| inDOL  | string | DOL of an image or of a DAL group                       |
|        |        | default "jmos.fits[1]"                                  |
| varDOL | string | DOL of corresponding variance map                       |
|        |        | default ""                                              |
| sigDOL | string | DOL of corresponding significance map                   |
|        |        | If 'inDOL' is a group the two parameters above are      |
|        |        | ignored.                                                |
|        |        | If 'inDOL' is an image then 'sigDOL' is used as signif- |
|        |        | icance map                                              |
|        |        | if not empty; then 'varDOL' is used as variance map     |
|        |        | if not empty                                            |
|        |        | default ""                                              |

#### Table 25: *j\_ima\_src\_locator* parameters

| slocRes       | string  | File for SLOC-RES (override)<br>Currently not active. Prepares for                                             |
|---------------|---------|----------------------------------------------------------------------------------------------------------------|
|               |         | jemx_science_analysis script                                                                                   |
| outFile       | string  | default "./jmx1_sloc_res.fits(JMX1-SLOC-RES)"<br>Name of output FITS file with source results                  |
|               | ~8      | Name of output file, that will be placed where                                                                 |
|               |         | DAL_CURRENT_DIR points<br>default "jmx1_sloc_res"                                                              |
| catDOL        | string  | DOL of user defined X-ray catalog                                                                              |
|               |         | FITS table with columns RA_OBJ, DEC_OBJ, FLAG<br>for the positions where a source fit is requested irre-       |
|               |         | spective of                                                                                                    |
|               |         | the existence of a source<br>default ""                                                                        |
| sigmaPSF      | real    | Defines the (gaussian) PSF width in pixels. Start point                                                        |
|               |         | for the fitting                                                                                                |
| sigmaFlat     | real    | default "1.5"<br>(avoid use) If set to a positive number then the input                                        |
|               | 10001   | image will be flatfielded with a gaussian of this                                                              |
|               |         | sigma before further analysis<br>default "0.0"                                                                 |
| erode         |         | Determines how much of the edge of the image where                                                             |
|               |         | the noise often is overwhelming should be excluded<br>from source finding. A high value implies a wide edge    |
|               |         | to be removed and vice versa.                                                                                  |
| N C           | . ,     | default "5.0"                                                                                                  |
| maxNumSrcs    | integer | Maximum number of sources to search for A limit to<br>the number of sources. prevents the output file to       |
|               |         | expand to an unreasonable size.                                                                                |
| maxNumCatSrcs | integer | default "14"<br>Maximum number of catalog sources to include used                                              |
|               |         | to define the amount of memory to allocate to the                                                              |
|               |         | internal data arrays<br>default "14"                                                                           |
| boxwidth      | integer | Edge dimension of sliding box The edge size of the box                                                         |
|               |         | used for finding the local RMS. Should be about five<br>times larger than the FWHM of the PSF                  |
|               |         | default "11"                                                                                                   |
| detsigMin     | real    | Detection significance lower limit" With the current<br>scheme put to 14. If you get too many spurious sources |
|               |         | then choose a higher value                                                                                     |
| ima Trun ag   | atring  | default "-0.3"                                                                                                 |
| imaTypes      | string  | Image types to search for sources Only applicable<br>if the input is a group. A good choice is "RECON-         |
|               |         | STRUCTED"                                                                                                      |
| saveI         | boolean | default "RECONSTRUCTED"<br>Flag for saving input image                                                         |
|               |         | default "n"                                                                                                    |
| saveF         | boolean | Flag for saving flat-fielded image default "n"                                                                 |
| saveM         | boolean | Flag for saving folded image                                                                                   |
| saveK         | boolean | default "n"<br>Flag for saving array of amplitudes                                                             |
|               |         | default "n"                                                                                                    |
| saveC         | boolean | Flag for saving array of chi squares default "n"                                                               |
|               | I       |                                                                                                                |

| saveS   | boolean | Flag for saving array of significance                   |
|---------|---------|---------------------------------------------------------|
|         |         | default "n"                                             |
| saveR   | boolean | Flag for saving array of local RMS values. The 'save?'  |
|         |         | parameters above should only be set to 'yes' is you are |
|         |         | working on a single image                               |
|         |         | default "n"                                             |
| chatter | integer | Level of chattiness                                     |
|         | _       | default "3"                                             |

# 9 Known Issues and Limitations

- 1. The JEM-X lightcurves are deadtime corrected. DEADC in the lightcurve files are set to 1.0 (for XRONOS compatibility).
- 2. Due to changes of the on-board configuration, the detection efficiency has changed significantly several times during the mission history. In particular for pointings between revolutions 26 to 45, this means that the measured fluxes of stable sources in particular at low energy will strongly depend on the time when the data was taken. These changes are not corrected for in flux units (counts/cm<sup>2</sup>/s in the given energy interval) but taken into account in spectral responses.
- 3. The JEM-X detector gain varies significantly for a few hours after the instrument has been switched on. This mostly affects the beginning of each revolution but can also happen if the instrument was shut down, e.g., for solar flares. The pattern is very similar each time and modeled in the gain correction step even in complicated cases. Nevertheless, it could in principle fail, in which case linear-interpolation gain correction values would be used, which could lead to distorted spectra. Users are advised to check this possibility in case of highly unusual source spectra e.g. by consulting

 $http://www.spacecenter.dk/{\sim}oxborrow/sdast/GAINresults.html$ 

- 4. If the gain correction step fails then take a look at the gain history table. Gain correction failure is often signaled by all corrected events having a non-zero STATUS value due to bad gain determination (64). If the gain history for your revolution shows multiple switch on/offs, this may be confusing j\_cor\_gain. Then remove all gain history values up to the switch on/off just before your SCW being analyzed. For help fitting data in these complicated revolutions contact Dr. Carol Anne Oxborrow at oxborrow@space.dtu.dk .
- 5. The source coordinates found by j\_ima\_iros may deviate a little from the true positions and this can occasionally cause inaccurate flux reconstructions from j\_src\_spectra or j\_src\_lc. If a good source position is available, it is better to force these coordinates by use of a user catalogue. An example is given in the cookbook (but see also point 8 below).
- 6. Lightcurves from weak sources may be contaminated by counts from stronger sources in the FOV. This happens because the source extraction does not take into account the presence of the other sources.
- 7. If you mix FULL and REST data then be sure to give chanMin/Max that match REST channel limits, for example:

chanMin: 64 128 160 192 chanMax: 127 159 191 223

- 8. In OSA v.7.0 and later, the source position reported in columns RA\_OBJ and DEC\_OBJ of JMX*i*-SRCL-RES will always be the one found by *j\_ima\_iros*. Columns RA\_CAT and DEC\_CAT reflect the catalog position if a user catalog has been defined. The SPE and LCR levels will read the RA\_OBJ and DEC\_OBJ columns and do the extraction using those. In order to force the use of the catalog positions which is recommended the JMXi-SRCL-RES table must be manipulated e.g. by an ftool, to update columns RA\_OBJ and DEC\_OBJ.
- 9. Light curve extraction is unchanged in OSA 10 compared to previous versions in order to allow the easy generation of short-bin light curves. However, long-term stability is not assured in this case; the user interested in long-term light curves or who doesn't need time bins shorter than the length of a science window is advised to generate light curves from the imaging step, as explained in the cook book.
- 10. It has been noticed that in mosaics of JEM-X images a plus-like depression in the background around certain sources can occur. This can happen for sources that are too weak to be noticed in the search for sources in the individual science windows. The cleaning process excludes (known) source areas. It operates horizontally and vertically since the systematics are strongest in these directions. However, adding many images can amplify the effect of an unnoticed source since the distribution of position angles is quite narrow, in particular for the sources near the galactic center, which is also where the

probability to find a source in the depression caused by a neighboring source is highest. If a source is situated in such an indentation its peaksize is reduced accordingly, whereas there is no change for the source causing the feature. This is solely an image feature so  $j_{-ima_{-}iros}$  flux determinations are unaltered.

- 11. A count-limiting mechanism, the grey filter, is actived, when sources corresponding to more than 0.75 Crab on-axis are in the field of view. The grey filter is adjusting itself automatically, according to the rate of events accepted as X-rays and the filling level of the onboard telemetry buffer. Ideally, a grey filter should randomly reject events. However, the mechanism implemented is only pseudo-random. Therefore some care should be taken in interpreting power spectra of arrival times of events from very bright sources with a very significant grey filter, as QPO artifacts may show up. Normally, the automatic grey filter is varying over a science window. This fortunately has the effect of "averaging" out power spectra artifacts, as they are specific to a particular grey filter setting. Therefore, if noticing transient features in the power spectra of very strong sources it should be checked if this is limited to a period of a specific grey filter setting. Please check the User Manual for further explanations.
- 12. Since 30 March 2012, there is a new instance of the Instrument Model Group (IMOD files version 22) produced by the JEM-X Team. The usage of these new IMOD files is highly recommended, and will be automatic upon update of your copy of the Instrument Characteristics files. Note however that the data are fully reliable only above 5 keV.
- 13. For the time being it is not trustable to extract spectra of strong sources with "mosaic\_spec" from images obtained with the PIF option (6.6.3).
- 14. The flux of a given source can be obtained either with the "standard" extraction or with mosaic\_spec. In case the fluxes obtained with the two methods would differ, it is suggested to consider the one obtained from the standard extraction (SPE level).
- 15. j\_ima\_src\_locator might interact wrongly with mosaics obtained in AIToff-Hammer projection. In case the mosaics are oriented in galactic coordinates, j\_ima\_src\_locator stores (without converting) G\_Lon and G\_Lat coordinates of the found sources under the columns RA and DEC of the jmxi\_sloc\_res file.

# A Low Level Processing Data Products

As it was explained in Section 3.1 JEM–X has five different telemetry formats: Full Imaging, Restricted Imaging, Spectral/Timing, Spectral and Timing. The information sent to ground in Restricted Imaging mode is enhanced with the count rate of the events. The time resolution of these Count Rate data is 125 ms, while the rate of the image transfer in this mode depends on the brightness of the source and may be up to 32 seconds for the faintest ones, see Table 2 for an overview.

During data taking JEM–X instruments can switch autonomously between two preplanned modes according to the fill status of an on-board buffer, thus avoiding data loss due to the buffer overflow, if the secondary mode allows higher transmission rate.

In addition to the mode switching there is also a grey filter mechanism which can reduce the telemetry load by rejecting a given number (up to and including 31) out of 32 hardware triggers. The value of the grey filter setting can vary from G=31 (all events are accepted) to G=0 (only one event from each 32 is accepted). In general, value G of grey filter means that 31-G events from 32 are rejected.

Table 26 summarizes all scientific data structures created in these modes. The data structures for JEM–X 1 and JEM–X 2 have the similar names, so to avoid the unnecessary repetition we write JMXi, where it should be replaced by "1" or "2" depending on the instrument.

| Telemetry Format          | Raw                 | Prepared            | Corrected           |
|---------------------------|---------------------|---------------------|---------------------|
|                           | Data Structure      | Data Structure      | Data Structure      |
|                           | Contains RAW        | Contains            | Contains Corrected  |
|                           | event/spectral data | event/spectral OBTs | event/spectral data |
| Full Imaging              | JMXi-FULL-RAW       | JMXi-FULL-PRP       | JMXi-FULL-COR       |
| Restricted Imaging (REST) | JMXi-REST-RAW       | JMXi-REST-PRP       | JMXi-REST-COR       |
| Count Rate for REST       | JMXi-RATE-RAW       | JMXi-RATE-PRP       | JMXi-RATE-COR       |
| Spectral/Timing           | JMXi-SPTI-RAW       | JMXi-SPTI-PRP       | JMXi-SPTI-COR       |
| Timing                    | JMXi-TIME-RAW       | JMXi-TIME-PRP       | JMXi-TIME-COR       |
| Spectral                  | JMXi-SPEC-RAW       | JMXi-SPEC-PRP       | JMXi-SPEC-COR       |

Table 26: List of JEM-X RAW, PRP and COR Data Structures

# A.1 Raw Data

For each Raw data structure given in the Table 26 there is a data structure with the same name but ending not with RAW but with PRW. These data structures contain package raw data with the information on the telemetry package structure and the position and Local On Board Time (LOBT) of the first event of the package. For the FULL, REST, Spectral and Spectral/Timing modes there are also data structures with names finished with SRW - these data structure contains secondary raw data with the information on the grey filter changes and various marker events transmitted in telemetry stream.

### A.1.1 Full Imaging mode

This is the main JEM-X format used for by far the largest part of the data taking. In this mode data have the highest imaging, spectral and timing resolution. The raw data are written to the JMXi-FULL-RAW data structure, see details in Table 27. Note that in an effort to compress the transmitted information the time stamping of each event is done relative to the previous event. The LOBT of the first event in each data packet is given in the JMXi-FULL-PRW data structure.

| Column Name | Description                  |
|-------------|------------------------------|
| RAWX        | X location of the event      |
| RAWY        | Y location of the event      |
| PHA         | Pulse height of the event    |
| DELTA_TIME  | Delta time to previous event |

Table 27: Content of JMXi-FULL-RAW Data Structure.

### A.1.2 Restricted Imaging mode

This format provides all imaging capabilities of FULL IMAGING, but provides limited spectral resolution (8 channels) and timing resolution (1/8 s for the count rates and up to 32 s for images). It is may be used when the source is too bright (exceeds 120 cts/s) and the full information can't be transmitted to the Earth. In this case raw data with spatial information are written to the JMXi-REST-RAW data structure, and count rates data are written to JMXi-RATE-RAW see details in Tables 28, 29. As we loose the time information during the accumulation time the events in the packets are ranked according the position of the triggered pixel (all the pixels have some conventional number in accordance of their position). Note that again only the position of the event with the lowest position number is transmitted (you can find it in JMXi-RATE-PRW) and for all others in TM only the relative positions are given. Pre-Processing calculates the absolute position and add it to the data structure.

Table 28: Content of JMXi-REST-RAW Data Structure.

| Column Name | Description                                           |
|-------------|-------------------------------------------------------|
| REST_PHA    | Pulse height of the event                             |
| DELTA_POS   | Delta position number of the event                    |
| RAWX        | X location of the event (calculated by PreProcessing) |
| RAWY        | Y location of the event (calculated by PreProcessing) |

| Table 29: Content of JMXi-RATE-RAW Data S | Structure. |
|-------------------------------------------|------------|
|-------------------------------------------|------------|

| Column Name | Description                                            |
|-------------|--------------------------------------------------------|
| DELTA_COUNT | Delta-countrate                                        |
| COUNT_RATE  | Reconstructed count rate (calculated by PreProcessing) |
| GREY_FILTER | Grey filter for first event in the count rate          |

### A.1.3 Spectral/Timing mode

This format provides the timing and spectral capabilities of FULL IMAGING, but no imaging. In this case raw data are written to the JMXi-SPTI-RAW data structure.

Table 30: Content of JMXi-SPTI-RAW Data Structure.

| Column Name | Description                  |
|-------------|------------------------------|
| PHA         | Pulse height of the event    |
| DELTA_TIME  | Delta time to previous event |

### A.1.4 Timing mode

This format provides only the timing information of the FULL IMAGING. In this case raw data are written to the JMXi-TIME-RAW data structure.

Table 31: Content of JMXi-TIME-RAW Data Structure.

| Column Name | -                            |
|-------------|------------------------------|
| DELTA_TIME  | Delta time to previous event |

#### A.1.5 Spectral mode

This format provides limited spectral resolution (64 channels) with limited time resolution (1/8 s) for the whole detector (no imaging). In this case raw data are written to the JMXi-SPEC-RAW data structure.

Table 32: Content of JMXi-SPEC-RAW Data Structure.

| Column Name | Description                                 |
|-------------|---------------------------------------------|
| GREY_FILTER | Grey filter for first event in the spectrum |
| SPECTRUM    | Counts in 64 channels                       |

#### A.1.6 Prepared Data

The main task of the Science Window Pipeline is to prepare raw data for the following Scientific Analysis. It converts the housekeeping parameters into the physical units and makes some corrections and transformations of the raw data that are not included in Pre-Processing. The Summary of all the prepared data structures with scientific information can be found in Table 26. All these data structures have the only column OB\_TIME with the full on-board time of the relevant data.FULL, SPTI and TIME OBTs refer to the individual events. SPEC OBTs give the time of each spectrum and REST OBTs give only the time of each image, so that the OBTs of the events within a single integration period are identical.

### A.1.7 Revolution File Data

The gain history table JMXi-GAIN-CAL-IDX and the calibration spectral fitting table JMXi-GAIN-CAL, are both created in the Revolution File Pipeline (RFP) which runs automatically at ISDC before/after/parallel with the Data Preparation step. The spectral fitting file is created every 256 seconds by  $j_{-calib_{-}gain_{-}fitting}$ , and the RFP then indexes the results into a single gain history table for each revolution. It is this gain history table that gets used automatically in  $j_{-}cor_{-}gain$ , unless a delivered IC gain history table exists for the revolution being processed.

# **B** Instrument Characteristics Data used in Scientific Analysis

## B.1 The IMOD group

The group JMXi-IMOD-GRP contains the instrument model description data structures for JEM-Xi. Table 33 describes those Data Structures from that group that are used in the Scientific Analysis. A specific version of these IC files consists of a number of instances each covering a time period during which the instrument setting and response can be considered constant. The parameter name for all components and the jemx\_science\_analysis script is "instMod". When given as an empty string the script itself will define an appropriate DOL from the general IC tree (masterfile).

| Table 33: | Content | of JMXi-IMOD-GRP | Group. |
|-----------|---------|------------------|--------|
|-----------|---------|------------------|--------|

| Group Member Description           |  |
|------------------------------------|--|
| Data Structures used at COR level. |  |

| JMXi-DETE-MOD       Contains the description of the JEM–Xi detector plane. Values indicate active and inactive pixels, bad anodes and their neighbours, calibration spectra overflow areas and permanent hotspots if there are any         Data Structures needed for Energy Correction         See more details in Section B.3 and Tables 35- 38.         JMXi-CALB-MOD       Lists the corrected upper limits of the bins used to convert the original 4096 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| overflow areas and permanent hotspots if there are any         Data Structures needed for Energy Correction         See more details in Section B.3 and Tables 35- 38.                                                                                                                                                                                                                                                                                        |
| Data Structures needed for Energy Correction<br>See more details in Section B.3 and Tables 35- 38.                                                                                                                                                                                                                                                                                                                                                            |
| See more details in Section B.3 and Tables 35-38.                                                                                                                                                                                                                                                                                                                                                                                                             |
| IMXi-CALB-MOD   Lists the corrected upper limits of the bins used to convert the original 4096                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| energy channels into 256 calibration telemetry channels.                                                                                                                                                                                                                                                                                                                                                                                                      |
| This table is used to bin the calibration data only since this is binned in the                                                                                                                                                                                                                                                                                                                                                                               |
| DFEE and transmitted as housekeeping.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| The bin boundaries have been corrected for any ADC non-linearity that                                                                                                                                                                                                                                                                                                                                                                                         |
| might arise during flight.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| JMXi-FULB-MOD Lists the corrected upper limits of the bins used to convert the original 4096                                                                                                                                                                                                                                                                                                                                                                  |
| energy channels into 256 full imaging and spectral timing energy telemetry                                                                                                                                                                                                                                                                                                                                                                                    |
| channels. The bin boundaries are corrected for ADC non-linearity.                                                                                                                                                                                                                                                                                                                                                                                             |
| JMXi-RESB-MOD Lists the corrected upper limits of the bins used to convert the original                                                                                                                                                                                                                                                                                                                                                                       |
| 4096 energy channels into 8 restricted imaging telemetry channels The bin                                                                                                                                                                                                                                                                                                                                                                                     |
| boundaries are corrected for ADC non-linearity.                                                                                                                                                                                                                                                                                                                                                                                                               |
| JMXi-SPCB-MOD Lists the corrected upper limits of the bins used to convert the original                                                                                                                                                                                                                                                                                                                                                                       |
| 4096 energy channels into 64 spectral mode telemetry channels The bin                                                                                                                                                                                                                                                                                                                                                                                         |
| boundaries are corrected for ADC non-linearity.                                                                                                                                                                                                                                                                                                                                                                                                               |
| JMXi-SPAG-MOD Contains the fractional corrections in percent to the raw event energy gain                                                                                                                                                                                                                                                                                                                                                                     |
| coefficients for all event modes from the JEM–Xi instrument as determined                                                                                                                                                                                                                                                                                                                                                                                     |
| by pre-flight calibrations and in-flight data. For each pixel the difference is                                                                                                                                                                                                                                                                                                                                                                               |
| determined compared to the average gain of the entire detector area. The                                                                                                                                                                                                                                                                                                                                                                                      |
| second slice of this table contains the percent corrections to be applied for                                                                                                                                                                                                                                                                                                                                                                                 |
| each anode due to anode deaths and instabilities.                                                                                                                                                                                                                                                                                                                                                                                                             |
| See also Section B.3                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| JMXi-FBDS-MOD Lists the nominal energy boundaries of the PI channels for energy measure-                                                                                                                                                                                                                                                                                                                                                                      |
| ments obtained with full and spectral-timing modes.<br>This data structure is also used as the EBOUNDS extension of the redistri-                                                                                                                                                                                                                                                                                                                             |
| bution matrix file (RMF).                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| See more details in Section B.3 and Table 38.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| JMXi-RBDS-MOD Lists the nominal energy boundaries of the PI channels for energy measure-                                                                                                                                                                                                                                                                                                                                                                      |
| ments obtained with restricted imaging mode.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| See more details in Section B.3 and Table 38.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| JMXi-SBDS-MOD Lists the nominal energy boundaries of the PI channels for spectra obtained                                                                                                                                                                                                                                                                                                                                                                     |
| in spectrum mode.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| See more details in Section B.3 and Table 38.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Data Structure used for position correction (see section B.4)                                                                                                                                                                                                                                                                                                                                                                                                 |
| JMXi-CORX-MOD     Contains the corrected X positions in mm from the center of detector for                                                                                                                                                                                                                                                                                                                                                                    |
| Full and Restricted Imaging event modes from the JEM–Xi instrument. It                                                                                                                                                                                                                                                                                                                                                                                        |
| is a 2D table with axes along X and Y positions where the raw values are                                                                                                                                                                                                                                                                                                                                                                                      |
| used.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| See more details in Section B.4.                                                                                                                                                                                                                                                                                                                                                                                                                              |
| JMXi-CORY-MOD The same as JMXi-CORX-MOD but for Y positions                                                                                                                                                                                                                                                                                                                                                                                                   |
| JMXi-PLLX-MOD Gives the X value (mm) of the lower left corner of the pixel                                                                                                                                                                                                                                                                                                                                                                                    |
| JMXi-PLLY-MOD Gives the Y value (mm) of the lower left corner of the pixel                                                                                                                                                                                                                                                                                                                                                                                    |
| JMXi-PSIZ-MOD Gives size of each pixel $(cm^2)$                                                                                                                                                                                                                                                                                                                                                                                                               |
| JMXi-PRED-MODIs the pixel redistribution description from the raw pixels on a regular pixel                                                                                                                                                                                                                                                                                                                                                                   |
| grid                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Data Structures used for Dead Time derivation                                                                                                                                                                                                                                                                                                                                                                                                                 |

| JMXi-DEAD-MOD | Contains the dead time model for the read time for different events for both     |  |  |
|---------------|----------------------------------------------------------------------------------|--|--|
|               | 8MHz and 16 MHz operation of the on-board CPU. TRIGGERS lists the                |  |  |
|               | event counter ID number from the on-board software and DEAD8_1 and               |  |  |
|               | DEAD16_1 give the time in seconds to do the read in. The usual on-board          |  |  |
|               | CPU speed is 16 MHz. Also contains a keyword for the double trigger effect.      |  |  |
|               |                                                                                  |  |  |
|               | Data Structures used for background handling                                     |  |  |
| JMXi-DBKG-MOD | Contains maps giving the spatial distribution of background counts at a          |  |  |
|               | number of energy levels including information about detector areas that          |  |  |
|               | should nopt be used.                                                             |  |  |
|               | Data Structure used for imaging and source finding                               |  |  |
| JMXi-COLL-MOD | Contains a collimator description in the form of two lists of the coordinates of |  |  |
|               | the collimator lamellae intersections. X- and Y-coordinates of intersection at   |  |  |
|               | the top and at the bottom are given in columns XSECTBOT, YSECTBOT,               |  |  |
|               | XSECTTOP, and YSECTTOP.                                                          |  |  |
| JMXi-MASK-MOD | Contains the mask description of JEM–Xi. It is 2D table with axes along          |  |  |
|               | Mask X- and Y -axes.                                                             |  |  |
| JMXi-OPNC-MOD | Gives the coordinates (mm) of the centers of the open holes in the mask          |  |  |
| JMXi-VIGN-MOD | Contains an array with vignetting factors for the JEM–Xi instrument. It is       |  |  |
|               | a 2D table with axes along X and Y-axes. This has been used to correct           |  |  |
|               | source intensities for collimator shadowing but is now obsolete.                 |  |  |
| JMXi-IROS-MOD | Contains some basic parameters for the component: j_ima_iros                     |  |  |
|               | Data Structure used for spectral analysis                                        |  |  |
| JMXi-ENRG-MOD | Contains the table of ENERGLO (lower limit of channel in keV) and EN-            |  |  |
|               | ERG_HI (upper limit of channel in keV) to be used in conjunction with            |  |  |
|               | E_MIN and E_MAX as found in JMXi-FBDS-MOD, JMXi-RBDS-MOD or                      |  |  |
|               | JMXi-SBDS-MOD for the spectral response matrix.                                  |  |  |

For full description of these and other data structures see the ISDC webpage.

# B.2 The BPL group

The abbreviation "BPL" stands for backprojection lists. Essentially this is the Aperture Response Function describing the visible sky elements from a given detector pixel.

The group JMXi-BPL.-GRP contains a compressed table together with three auxiliary arrays plus vignetting arrays. Table 34 describes those Data Structures.

| Table 34: | Content | of | JMXi-BPLGRP | Group. |
|-----------|---------|----|-------------|--------|
|-----------|---------|----|-------------|--------|

| Group Member  | Description                                                                       |
|---------------|-----------------------------------------------------------------------------------|
| JMXi-DALL-BPL | The d_allow array contains for each detector pixel a list of sky directions       |
|               | which have access to this pixel. ("access" here means that more half the          |
|               | pixel area is visible from above the mask along the direction in question)        |
|               | The number of sky-bins in the list corresponding to a given detector pixel        |
|               | is given as an entry in the d_allow_l array, the full 16-bit address of the first |
|               | direction having access to the pixel is given in the d_allow_p array.             |
|               | The list itself is organized as a difference list: each direction defined by      |
|               | an 8-bit unsigned number giving the difference between in addresses of the        |
|               | previous direction and the current direction. Should two directions differ        |
|               | by more than 254 units, the difference will be written by N bytes with the        |
|               | value 255 and finally a byte with the remaining difference (after subtraction     |
|               | of N*255)                                                                         |
| JMXi-DAWL-BPL | Number of sky pixels visible from a given detector pixel                          |

| JMXi-DAWP-BPL | Array giving the address of the first sky pixel visible from a given detector  |
|---------------|--------------------------------------------------------------------------------|
|               | pixel                                                                          |
| JMXi-DAST-BPL | The d_allow_st array contains for each detector pixel the address of the start |
|               | of the corresponding list in the d_allow array.                                |
| JMXi-DMAP-BPL | 51 arrays giving the number of detector pixels illuminated from each sky       |
|               | pixel (vignetting arrays). The 51 arrays corresponds to 51 different radius    |
|               | limits covering the range from 75 to 125 mm) used in selecting events from     |
|               | the shadowgrams.                                                               |

For full description of these and other data structures see the ISDC webpage.

# B.3 Energy Binning: ADC to PI

### **PHA Binning**

The energy values of the events provided in the telemetry are given as a bin number from 0 to 255. These are non-linear groupings of the original 4096 bins of the onboard ADC. JMXi-\*\*\*B-MOD data structures (Table 35) indicate the ADC bins covered by a given telemetry PHA bin. These data structures are part of the instrument model group JMXi-IMOD-GRP (Table 33). Each binning table gives a list of the highest ADC channel within each PHA bin.

Each of the different data-taking modes has its own binning table data structure fitting its telemetry energy resolution. Tables with fewer than 256 bins are just subsets of the full 256-bin table.

Table 35: Content of JMXi-\*\*\*B-Mod Data Structures.

| Column Name | Description                                              |
|-------------|----------------------------------------------------------|
| CHANNEL     | Uppermost effective adc channel in a given telemetry bin |

See also Section 3.2.1 for more details.

### PI Binning

During automatic calibration the original PHA values of the events and spectra are converted into keV values based on the fitting of the Fixed Radiation Source System (FRSS) calibration spectra. The upper part of figure 26 shows the FRSS calibration spectra which are used to determine the detector gain on each of the four anode segments of both units at 4 minute intervals. The standard FRSS setup has a Cd-109 source with a Nickel window, but only one useable doublet is seen: the Cadmium 22.1/25.0 keV lines. This spectrum is shown by the full line.

Anodes 0 and 2 of unit JEM–X each have an Fe-55 source for calibration, and the calibration spectrum from these anode segments is shown with the dotted line. This spectrum is modelled as an unresolved doublet at 5.9/6.1 keV.

The FRSS spectrum is sent down as counts in each of 256 PHA channels (0 to 255) that cover logarithmically sized bins of the 4096 ADC channels of the ADC that registers the Pulse Height Amplitude. The uppermost ADC channel appearing in each PHA channel is given in the binning table JMXi-CALB-MOD in the instrument model group. The upper channel in the last bin must always be 4095. The logarithmic binning of the ADC channels is chosen to reflect the energy resolution of the detector, which is roughly  $\Delta E = 0.47 \sqrt{E(inkeV)}$ .

Many things are expected to affect the pulse size the ADC will register for a given event energy: detector temperature, gas pressure, micro-strip plate charging, the age of the gas, and maybe some as yet unknown influences. This is why FRSS spectrum are sent in the housekeeping every 256 seconds to correct the gain

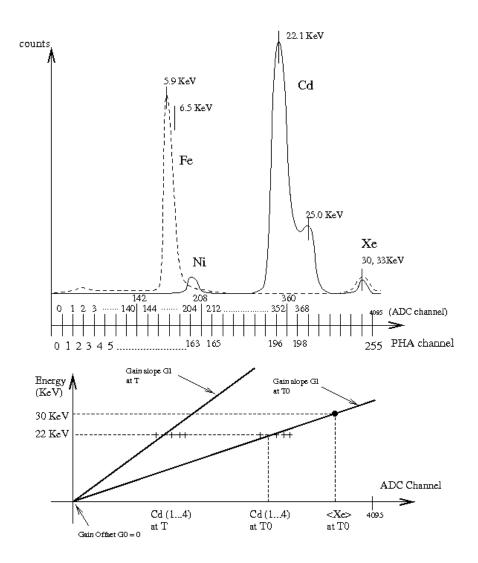



Figure 26: FRSS calibration spectra.

continuously.

Since the ADC is known to be linear to better than the accuracy used by the telemetry we can assume a relationship between event energy and ADC channel, n:

$$E = G_0 + G_1.n\tag{1}$$

The PHA-binned spectra are fitted by gaussian line models and the resulting peak positions at 22.1KeV and 6 KeV are used to find the 'raw' gain conversion factor G1, in KeV per ADC channel for the four minute interval. Both this value of G1 and the peak ADC channels are saved to JMXi-GAIN-CAL as keywords.

The contents of JMXi-GAIN-CAL is tabulated over an entire revolution (and over the entire mission) in a gain history table JMXi-GAIN-CAL-IDX, which is read by j\_cor\_gain to perform the gain conversion.

In the gain correction program  $j_{-cor\_gain}$  the peak positions are divided by the positions at a reference time and then multiplied by the overall gain of the entire detector at that time, determined from the Xe fluorescence lines in blank field observations at the reference time. This gives the time-corrected gain conversion factor that is used to convert individual event or spectral PHA values to PI values.

In theory the detector ADC offset, G0, can be non-zero, but since an offset factor is already subtracted from the measured energy value by the on-board software, this value will in practice usually be zero. The value of the zero-energy ADC channel is determined by the electronic calibration procedure at the beginning of every revolution. Currently this corresponds to the value subtracted on board. If the zero-point ADC value changes an on-board patch can be used to return the offset value seen in the telemetry to zero again.

 $G_1$  is the gain slope or linear calibration parameter. See the lower part of figure 26. In practice G0 is zero and typical values of G1 are 0.07 KeV per ADC channel for JEM–X1 and 0.05 KeV per ADC channel for JEM–X2.

| Column Name     | Description                                           |  |
|-----------------|-------------------------------------------------------|--|
| REVOL           | Revolution number                                     |  |
| OBT_ACQ         | OBT acquisition time in the middle of the integration |  |
| INT_TIME        | Effective integration time                            |  |
| TSTART          | Start time of interval covered by this file           |  |
| TSTOP           | End time of interval covered by this file             |  |
| G_ZERO_1        | Zero channel detector gain from spectrum 1            |  |
| $G_{-}CAL_{-}1$ | First order detector gain from spectrum 1             |  |
| RESOL_1         | Energy resolution for spectrum 1                      |  |
| PKINT_1         | Peak intensity in counts for spectrum 1               |  |
| PKCHAN_1        | ADC channel of line peak for spectrum 1               |  |
| G_ZERO_2        | Zero channel detector gain from spectrum 2            |  |
| G_CAL_2         | First order detector gain from spectrum 2             |  |
| RESOL_2         | Energy resolution for spectrum 2                      |  |
| PKINT_2         | Peak intensity in counts for spectrum 2               |  |
| PKCHAN_2        | ADC channel of line peak for spectrum 2               |  |
| G_ZERO_3        | Zero channel detector gain from spectrum 3            |  |
| G_CAL_3         | First order detector gain from spectrum 3             |  |
| RESOL_3         | Energy resolution for spectrum 3                      |  |
| PKINT_3         | Peak intensity in counts for spectrum 3               |  |
| PKCHAN_3        | ADC channel of line peak for spectrum 3               |  |
| G_ZERO_4        | Zero channel detector gain from spectrum 4            |  |
| G_CAL_4         | First order detector gain from spectrum 4             |  |
| RESOL_4         | Energy resolution for spectrum 4                      |  |
| PKINT_4         | Peak intensity in counts for spectrum 4               |  |
| PKCHAN_4        | ADC channel of line peak for spectrum 4               |  |

Table 36: Content of JMXi-GAIN-CAL-IDX Index.

Table 37: Content of JMXi-GAIN-CAL Index.

| Column Name | Description                               |
|-------------|-------------------------------------------|
| RESID_1     | Residual counts of calibration spectrum 1 |
| RESID_2     | Residual counts of calibration spectrum 2 |
| RESID_3     | Residual counts of calibration spectrum 3 |
| RESID_4     | Residual counts of calibration spectrum 4 |

No useful values of the gain parameters can be found if there is a problem processing the calibration spectra. This problem only arises when housekeeping packets are missing, and is relatively rare. Using either linear interpolation of the gain history table or the decay-model smoothing, makes an unbroken gain history in these cases.

Pre-launch testing of the flight models and experiments with the flight spare indicate that the strength of the FRSS sources illuminating small spots on the detector causes charging phenomena on the microstrip plate such that the gain at these points is not characteristic of the entire anode segment it represents and may also show sudden drops where small discharges occur. This problem is resolved by normalising the gain at each calibration point with the gain determined from the Xe line seen over the entire detector at a particular reference time for which we have plenty of blank-field data. Temporal changes in these normalised gains are then a direct reflection of the gain variation over the entire detector. Reference values of the Xe line and calibration source positions are stored in keywords in the header of JMXi-SPAG-MOD datastructure in the IMOD group (IC data).

Discharge glitches in the calibration spectra are smoothed out of the time variation correction by using a time-smoothing model across an entire revolution of data in  $j\_cor\_gain$ .

All data, including the FRSS spectra, are expected to show the 30–33 keV Xenon fluorescence doublet to some extent. These lines are too weak to act as temporal gain variation markers but, at can determined from summing blank field data, how well gain determination functions over the entire detector area.

The correlation (gain) between the PHA and PI channels varies both in time due to temperature, pressure and voltage fluctuations, and across the surface of the detector.

The major part of the spatial gain variation arises from the construction of the microstrip plate and the uniformity of the various strips. This variation is stored as percent differences in line ADC positions in data structure JMXi-SPAG-MOD (Table B). These values have been determined by pre-flight calibrations. However there are secondary corrections to these tables, determined by in-flight monitoring, to correct for dead and unstable anode strips. This Data Structure contains two 2D arrays along X and Y axes with fractional change for each pixel determined by pre-flight calibration in the first slice and secondary corrections determined since launch in the second slice.

The list of the energy boundaries of the PI channels can be found in JEMXi-\*BDS-MOD Data Structure (Tables 33,38). Some more details can be also found in Section 3.2.2).

In rebinning our events and spectra from PHA channels to PI channels, we can expect to introduce some inaccuracy into the energy measurements. However the PI channels are carefully chosen to reflect the inherent energy resolution of the detector, so this added error is small compared to the detector energy resolution.

| Column Name | Description                            |
|-------------|----------------------------------------|
| CHANNEL     | Channel number                         |
| E_MIN       | Minimum energy for this channel in keV |
| $E_{-}MAX$  | Maximum energy for this channel in keV |

Table 38: Content of JEMXi-\*BDS-MOD Data Structures.

# **B.4** Detector positions

Initially the position of an event is given as raw detector pixel numbers, 0–255, where value (0,0) lies outside the active detector area. RAWX and RAWY are integers. During COR processing level, these detector values are corrected for known errors in the position determination across the detector area (with the the help of JEMXi-CORX-MOD and JEMXi-CORY-MOD). The position correction models provide detector coordinates of each pixel in millimeters from the center of the detector (columns DETX and DETY).

The center-most intersection of the collimator defines the detector center. Each shadowgram pixel is 1 mm, and the origin of the detector coordinates is at [127.5, 127.5] expressed as corrected pixels.

# **B.5** Detector Response Matrix

The IC file JMXi-RMF-GRP.fits is a grouping table with three children: JMXi-RMF.-RSP, JMXi-FBDS-MOD and JMXi-AXIS-ARF.

JMXi-RMF.-RSP is the standard detector response normalized to the sum of 1.0 over the detector channels, see Table 39 for more details.

| Column   | Description                                                |
|----------|------------------------------------------------------------|
| ENERG_LO | Low energy bound of the energy bin, keV                    |
| ENERG_HI | High energy bound of the energy bin, keV                   |
| N_GRP    | Number of channel subsets for the energy bin               |
| F_CHAN   | First channel in each subset for the energy bin            |
| N_CHAN   | Number of channels within each subset for the energy bin   |
| MATRIX   | Response values for each channel subset for the energy bin |

| Table 39: | Content of | JMXi-RMFRSP | Data Structure. |
|-----------|------------|-------------|-----------------|
|-----------|------------|-------------|-----------------|

JMXi-AXIS-ARF contains ancillary response information for an on-axis source in the JEM-X field of view, see Table 40 for details.

Table 40: Content of JMXi-AXIS.-ARF Data Structure.

| Column   | Description                                                                         |
|----------|-------------------------------------------------------------------------------------|
| ENERG_LO | Lower energy boundaries of bins                                                     |
| ENERG_HI | Upper energy boundaries of bins                                                     |
| SPECRESP | Effective area in $cm^2$ of the detector for a given source taking all effects into |
|          | account                                                                             |

JMXi-FBDS-MOD holds the electronic channels of the detector in Full Imaging Mode. This data structure is a copy of the data structure with the same name in JMXi-IMOD-GRP.fits (See Tables 33 and 38). It is simply repeated for completeness.

# C Science Data Products

# C.1 $j_{-}correction$

This script corrects all data available within the Science Window Group for a given JEM-X detector.

### C.1.1 $j_{-}cor_{-}gain$

The executable  $j_{-}cor_{-}gain$  corrects all science data received for the condition of the individual pixels in the detector, temporal and spatial changes in the detector gain. The PHA channels of every event are converted to PI energies. Event energies, randomized within their bin and given as floating point keV values, are given in column ENERGY of JMXi-\*\*\*\*-COR.

For science events the output consists of energy values given in PI channels. For spectra taken in SPEC mode, the output are spectra rebinned into PI channels (Table 42). Whenever poor gain determination occurs the relevant events or spectra are flagged in the STATUS column of JMXi-\*\*\*-COR, see the possible STATUS values in Table 41.

### C.1.2 $j_{-}cor_{-}position$

 $j_{-cor_{-}position}$  converts detector positions corrected for microstrip plate irregularities into absolute values (mm from centre of detector). Event positions are randomized within the pixel designated by the two event telemetry values RAWX and RAWY, and given as floating point values in columns DETX and DETY of JMXi-\*\*\*\*-COR.

If an event falls in an area where the position determination is known to be bad, then a flag is raised in the STATUS column of the relevant -COR extension. Bad areas of the detector are signaled in the correction table extensions by having one or both position values equal to 1000.0 plus the corrected position value.

The possible values of STATUS are given in the Table 41

| Value | Meaning                                                                |
|-------|------------------------------------------------------------------------|
| 0     | Event good for all analysis purposes                                   |
| 4     | Events fall on anode segment with a dead anode in the calibration area |
|       | (currently 4th anode on JEM-X 2)                                       |
| 8     | Event has uncertain time correlation                                   |
| 16    | Event comes from an anode regarded as bad                              |
| 32    | Event comes from position next to a bad anode                          |
| 64    | Bad energy due to poor detector gain history determination             |
| 128   | Bad energy determination due to event position                         |
| 256   | Bad $X$ position determination                                         |
| 512   | Bad $Y$ position determination                                         |
| 1024  | Possibly leaked event from a calibration source                        |
| 2048  | Event detected before SETUP at beginning of Science Window             |
| 4096  | Event from outside active area of detector                             |
| 8192  | Event coming from known hotspot on detector                            |

As you see these STATUS values are the powers of 2. If events are failed in more then one way then STATUS is equal to the sum of the corresponding values, the back reconstruction has no problems and rise no ambiguity.

Events that fail in one or more ways can still be used for some purposes: binned spectra don't require

good position determinations; uncertainties in gain determination don't affect sky images etc. Therefore each program here after can select all the events that are appropriate for making high quality science data products with the best possible statistics.

The content of the corrected data structures for the different data modes is given in Table 42

| Column Name   | Description                                         |  |  |
|---------------|-----------------------------------------------------|--|--|
| JMXi-FULL-COR |                                                     |  |  |
| DETX          | Corrected $X$ location of the event on the detector |  |  |
| DETY          | Corrected $Y$ location of the event on the detector |  |  |
| PI            | Pulse Invariant energy of the event                 |  |  |
| STATUS        | 'Goodness' of the corrected events                  |  |  |
|               | JMXi-REST-COR                                       |  |  |
| DETX          | Corrected $X$ location of the event on the detector |  |  |
| DETY          | Corrected $Y$ location of the event on the detector |  |  |
| REST_PI       | Pulse Invariant energy of the event                 |  |  |
| STATUS        | 'Goodness' of the corrected events                  |  |  |
|               | JMXi-RATE-COR                                       |  |  |
| RATE_CORR     | Corrected count rate                                |  |  |
| STATUS        | 'Goodness' of the data                              |  |  |
|               | JMXi-SPTI-COR                                       |  |  |
| PI            | Pulse Invariant energy of the event                 |  |  |
| STATUS        | 'Goodness' of the corrected events                  |  |  |
| JMXi-SPEC-COR |                                                     |  |  |
| SPEC_CORR     | Corrected Counts in the 64 PI channels              |  |  |
| STATUS        | 'Goodness' of the corrected spectra                 |  |  |

Table 42: Content of JMXi-\*\*\*-COR Data Structures.

The TIME data do not have a -COR data structure, as the on-board time is calculated at ISDC during the Data Preparation, so the corrected TIME events are in JMXi-TIME-PRP

## C.2 $j_-gti$

This script builds Good Time Interval information from housekeeping data, information about satellite stability, and data gaps. As a result the program writes the merged GTI into the output GTI table JMXi-GNRL-GTI (Table 43).

| Table 43: | Content o | f JMXi-GNRL-GTI | Data Structure. |  |
|-----------|-----------|-----------------|-----------------|--|
|           |           |                 |                 |  |

| Column Name | Description                       |
|-------------|-----------------------------------|
| OBT_START   | On-board time of start of the GTI |
| OBT_END     | On-board time of end of the GTI   |
| START       | IJD time of start of the GTI      |
| STOP        | IJD time of stop of the GTI       |
| UTC_START   | UTC time of start of the GTI      |
| UTC_STOP    | UTC time of stop of the GTI       |

# C.3 *j\_dead\_time*

At this step dead time is calculated. It is saved to JMXi-DEAD-SCP (Table 44) which is stored once for each science window.

| Table 44: | Content | of JMXi-DEAD-SCP | Data Structure. |
|-----------|---------|------------------|-----------------|
|-----------|---------|------------------|-----------------|

| Column Name | Description                                                         |
|-------------|---------------------------------------------------------------------|
| OB_TIME     | OBT of the dead time calculation                                    |
| DEADTIME    | Fractional input dead time not including grey filter losses         |
| RATE_COR    | Factor for correcting count rates, not including grey filter losses |
| DEAD_EFF    | Total effective dead time including grey filter                     |

# C.4 $j_{-}cat_{-}extract$

The output catalogue of the selected sources is written to a new source list with the same structure JMXi-SRCL-CAT.

| Table 45:  | Content | of | JMXi-SCAL-BKG | and | JMXi-SCAL-DBG Data |  |
|------------|---------|----|---------------|-----|--------------------|--|
| Structures |         |    |               |     |                    |  |

| Column Name | Description                                |
|-------------|--------------------------------------------|
| DELTAOBT    | Delta-OBT from beginning of Science Window |
| SCALFACT    | Scaling factor                             |

# C.5 *j\_image\_bin*

This script creates shadowgrams in several, user-defined energy bands. The result shadowgram can be represented in either 'skew' or 'standard' system and is appended to the index group JMXi-EVTS-SHD-IDX.

| Table 46: Content of JMXi-EVTS-SHD-IDX |
|----------------------------------------|
|----------------------------------------|

| Column Name | Description                                        |
|-------------|----------------------------------------------------|
| OBTSTART    | OBT start of integration                           |
| OBTEND      | OBT end of integration                             |
| TELAPSE     | Total observation elapsed time in seconds          |
| EXPOSURE    | Mean exposure time over the detector plane         |
| CHANMIN     | Lowest channel of the energy range                 |
| CHANMAX     | Highest channel of the energy range                |
| SHDIDEN     | Shadowgram identification number                   |
| SHDTYPE     | Shadowgram type (1:standard, 2:raw, 3:regularized) |
| EVNTYPES    | Code for event types (0:FULL, 1:REST, -1:both)     |

# C.6 $j_{-}imaging$

#### **C.6.1** *j\_ima\_iros*

This executable makes a basic image reconstruction for the input shadowgrams in the index group (JMXi-EVTS-SHD-IDX). The resulting sky image JMXi-SKY.-IMA is constructed backprojection.

The information on the found sources and their fluxes is written to the JMXi-SRCL-RES data structure.

Table 47: Content of JMXi-SRCL-RES Data Structure.

| Column Name | Description                                           |
|-------------|-------------------------------------------------------|
| SOURCE_ID   | ISDC unique source identifier                         |
| DAY_ID      | Modified Julian Date of source's first identification |
| NAME        | One commonly used name for the source                 |
| CLASS       | source classification code                            |

| RA_OBJ      | Source right ascension in degrees                                 |
|-------------|-------------------------------------------------------------------|
| DEC_OBJ     | Source declination in degrees                                     |
| ERR_RAD     | Error radius                                                      |
| RELDIST     | Relative distance of the source $(= d/(r1 + r2))$ , where d is a  |
| 102220101   | distance to catalog source identified with the source and rn are  |
|             | the respective error radii of the sources.                        |
| SPA_MODL    | Model for source spatial extension (point, disk, ellipse, square, |
|             | gaussian, Bspline, etc)                                           |
| SPA_NPAR    | Number of parameters for source spatial extension                 |
| SPA_PARS    | Parameters for source spatial extension                           |
| SPE_MODL    | Model for source spectrum (XSPEC syntax)                          |
| SPE_NPAR    | Number of parameters for source spectrum                          |
| SPE_PARS    | Parameters for source spectrum                                    |
| VAR_MODL    | Model for source intensity variability (const, sin, burst)        |
| VAR_NPAR    | Number of parameters for source intensity variability             |
| VAR_PARS    | Parameters for source intensity variability                       |
| COMMENTS    | Comments                                                          |
| SPI_FLUX_1  | SPI flux in the soft SPI energy band                              |
| SPI_FLUX_2  | SPI flux in the hard SPI energy band                              |
| ISGR_FLUX_1 | ISGRI flux in the soft ISGRI energy band                          |
| ISGR_FLUX_2 | ISGRI flux in the hard ISGRI energy band                          |
| PICS_FLUX_1 | PICsIT flux in the soft PICsIT energy band                        |
| PICS_FLUX_2 | PICsIT flux in the hard PICsIT energy band                        |
| JEMX_FLUX_1 | JEMX flux in the soft JEMX energy band                            |
| JEMX_FLUX_2 | JEMX flux in the hard JEMX energy band                            |
| E_MIN       | Lower energy boundaries                                           |
| E_MAX       | Upper energy boundaries                                           |
| FLUX        | Flux values                                                       |
| FLUX_ERR    | Flux errors                                                       |
| SEL_FLAG    | Source selection flag                                             |
| DETSIG      | Source detection significance in JEM-X                            |
| FLAG        | Generic flag                                                      |
| COSX_JMX    | Direction cosine between X-axis and source in instrument coor-    |
|             | dinates                                                           |
| COSY_JMX    | Direction cosine between Y-axis and source in instrument coor-    |
|             | dinates                                                           |
| COSZ_JMX    | Direction cosine between Z-axis and source in instrument coordi-  |
|             | nates                                                             |

### C.6.2 q\_identify\_srcs

 $q_{-identify_{-}src}$  updates the columns in JMXi-SRCL-RES with source name and identifier.

### C.7 *j\_src\_extract\_spectra*

This script derives JEM-X countrate spectra for all sources found in the current Science Window.

Output is in three data structures: JMXi-SRCL-BSP contains the background spectra at each source location, which have been used to correct the source spectrum itself. Background spectra are stored in PHA II format.

JMXi-SRCL-SPE contains the spectra for each individual found source. Spectra are stored in PHA II format.

JMXi-SRCL-ARF contains ancillary response for each source. The ARFs are stored in the ARF II format. (The ARF is scaled to the total detector area to correspond to the stored spectra. The scaling will probably be changed so that it corresponds to the source illuminated area.)

| Table 48: | Content of JMXi-SRCL-BSP | Data Structure. |
|-----------|--------------------------|-----------------|
|-----------|--------------------------|-----------------|

| Column Name | Description                                                   |
|-------------|---------------------------------------------------------------|
| SPEC_NUM    | Reference Number of spectrum in this row                      |
| ROWID       | Unique identifier of spectrum                                 |
| CHANNEL     | Array of channel numbers for the countrates                   |
| RATE        | Array of countrates in the defined channels                   |
| STAT_ERR    | Array of estimated statistical uncertainty of the countrates  |
| SYS_ERR     | Array of estimated systematical uncertainty of the countrates |
| QUALITY     | Array of quality flags for the channels                       |
| EXPOSURE    | Effective integration time for the spectrum                   |
| TELAPSE     | Total elapsed time of the data in seconds                     |
| ONTIME      | Sum of good time intervals in seconds                         |
| DEADC       | Deadtime correction factor                                    |
| TFIRST      | Start of the integration time interval in IJD                 |
| TLAST       | End of the integration time interval in IJD                   |

Table 49: Content of JMXi-SRCL-SPE Data Structure.

| Column Name | Description                                                   |
|-------------|---------------------------------------------------------------|
| SPEC_NUM    | Reference Number of spectrum in this row                      |
| ROWID       | Unique identifier                                             |
| CHANNEL     | Array of channel numbers for the countrates                   |
| RATE        | Array of countrates in the defined channels                   |
| STAT_ERR    | Array of estimated statistical uncertainty of the countrates  |
| SYS_ERR     | Array of estimated systematical uncertainty of the countrates |
| QUALITY     | Array of quality flags for the channels                       |
| BACKFILE    | File and row of corresponding background spectrum             |
| BACKSCAL    | Background scaling factor                                     |
| ANCRFILE    | File and row of corresponding ARF                             |
| EXPOSURE    | Effective integration time for the spectrum                   |
| TELAPSE     | Total elapsed time of the data in seconds                     |
| ONTIME      | Sum of good time intervals in seconds                         |
| DEADC       | Deadtime correction factor                                    |
| TFIRST      | Start of the integration time interval in IJD                 |
| TLAST       | End of the integration time interval in IJD                   |
| EVT_TYPE    | Event type                                                    |

Table 50: Content of JMXi-SRCL-ARF Data Structure.

| Column Name | Description                                                            |  |  |  |
|-------------|------------------------------------------------------------------------|--|--|--|
| ARF_NUM     | Reference Number of ARF data in this row                               |  |  |  |
| ENERG_LO    | Lower energy boundaries of bins                                        |  |  |  |
| ENERG_HI    | Upper energy boundaries of bins                                        |  |  |  |
| SPECRESP    | Effective area in $cm^2$ of the detector for a given source taking all |  |  |  |
|             | effects into account                                                   |  |  |  |

# C.8 *j\_src\_extract\_lc*

This application extracts energy-binned light curves for each found point source in the FOV. Background subtraction is an integral part of the data extraction. The only used executable is  $j\_src\_lc$ .

### **C.8.1** *j\_src\_lc*

Creates binned lightcurves for each found source in FOV. The output data structure JMXi-SRC.-LCR (see Table 51) contains a countrate light curve for a given source and a given energy range of the JEM-Xi instrument.

| Column Name | Description                                         |
|-------------|-----------------------------------------------------|
| TIME        | Time of measurement for the bin                     |
| TIMEDEL     | Integration time for the bin                        |
| RATE        | Countrate in the given energy band                  |
| ERROR       | Countrate error in the the given energy band        |
| BRATE       | Background countrate in the given energy band       |
| BERROR      | Background countrate error in the given energy band |
| BARYTIME    | Barycentric time for the bin                        |

| Table 51: C | Content of JMX | i-SRCLCR | Data Structure. |
|-------------|----------------|----------|-----------------|
|-------------|----------------|----------|-----------------|

### C.9 $j_bin_spectra$

This script bins events or Spectral Mode data without deconvolution.

#### $\textbf{C.9.1} \quad j\_bin\_evts\_spectra$

This executable generates detector spectra for a single JEM-X unit from Full Imaging, Restricted Imaging or Spectral/Timing events by binning the event data.

The output data structures are JMXi-FULL-DSP, JMXi-REST-DSP and JMXi-SPTI-DSP. These data structures are compatible with XSPEC.

| Table                          | 52: | Content | of | JMXi-FULL-DSP, | JMXi-REST-DSP | and |
|--------------------------------|-----|---------|----|----------------|---------------|-----|
| JMXi-SPTI-DSP Data Structures. |     |         |    |                |               |     |

| Column Name | Description                                                   |  |
|-------------|---------------------------------------------------------------|--|
| SPEC_NUM    | Reference Number of spectrum in this row                      |  |
| ROWID       | Unique descriptive string for each spectrum                   |  |
| CHANNEL     | Array of channel numbers for the countrates                   |  |
| RATE        | Array of countrates in the defined channels                   |  |
| STAT_ERR    | Array of estimated statistical uncertainty of the countrates  |  |
| SYS_ERR     | Array of estimated systematical uncertainty of the countrates |  |
| QUALITY     | Array of quality flags for the channels                       |  |
| BACKFILE    | File and row of corresponding background spectrum             |  |
| BACKSCAL    | Background scaling factor                                     |  |
| EXPOSURE    | Effective integration time [s] for the spectrum               |  |
| TSTART      | Start of the integration time interval in IJD                 |  |
| TSTOP       | End of the integration time interval in IJD                   |  |

# $\textbf{C.9.2} \quad j\_bin\_bkg\_spectra$

This executable generates time resolved spectra for a single JEM-X detector by rebinning background model data to spectra.

The output data structures are listed in Table 53 and has structure similar to one described in Table 52 but without BACKFILE and BACKSCAL columns.

Table 53: List of the *j\_bin\_bkg\_spectra* output Data Structures

| Name          | Description                                                            |
|---------------|------------------------------------------------------------------------|
| JMXi-FULL-BSP | Contains time resolved background spectra for Full Imaging data.       |
| JMXi-REST-BSP | Contains time resolved background spectra for Restricted Imaging data. |
| JMXi-SPEC-BSP | Contains time resolved background spectra for Spectrum Format data.    |
| JMXi-SPTI-BSP | Contains time resolved background spectra for Spectral/Timing data.    |

# **C.10** *j\_bin\_lc*

The  $j\_bin\_lc$  script bins event data into lightcurves in different energy bands. There are two possible outputs of this program: normal lightcurves and period-folded lightcurves. In the case of nPhaseBins=0 Data Structures JMXi-DETE-LCR-IDX and JMXi-DETE-LCR are filled. JMXi-DETE-LCR contains a countrate lightcurve for the whole JEM-Xi detector binned from event or countrate data.

In the case nPhaseBins>0 Data Structures JMXi-DETE-FLC-IDX and JMXi-DETE-FLC are filled. JMXi-DETE-FLC contains a countrate lightcurve folded with a given period for the whole JEM-Xi2 detector binned from event or countrate data.

| Column Name | Description                                             |  |
|-------------|---------------------------------------------------------|--|
| DATAMODE    | Science format used to create lightcurve (FULL or REST) |  |
| CHANMIN     | Lowest channel of the energy range                      |  |
| CHANMAX     | Highest channel of the energy range                     |  |
| E_MIN       | Lower bound of the energy range                         |  |
| E_MAX       | Upper bound of the energy range                         |  |

 Table 54: Content of JMXi-DETE-LCR-IDX
 Data Structure.

|  | Table 55: | Content of JMXi-DETE-LCR | Data Structure. |
|--|-----------|--------------------------|-----------------|
|--|-----------|--------------------------|-----------------|

| Column Name | Description                                         |  |
|-------------|-----------------------------------------------------|--|
| TIME        | Time of measurement for the bin                     |  |
| TIMEDEL     | Integration time for the bin                        |  |
| RATE        | Countrate in the given energy band                  |  |
| ERROR       | Countrate error in the the given energy band        |  |
| BRATE       | Background countrate in the given energy band       |  |
| BERROR      | Background countrate error in the given energy band |  |
| BARYTIME    | Barycentric time for the bin                        |  |

Table 56: Content of JMXi-DETE-FLC-IDX Data Structure.

| Column Name | Description                                             |  |  |
|-------------|---------------------------------------------------------|--|--|
| DATAMODE    | Science format used to create lightcurve (FULL or REST) |  |  |
| CHANMIN     | Lowest channel of the energy range                      |  |  |
| CHANMAX     | Highest channel of the energy range                     |  |  |
| E_MIN       | Lower bound of the energy range                         |  |  |
| E_MAX       | Upper bound of the energy range                         |  |  |
| PERIOD      | Period in seconds with which the lightcurve was folded  |  |  |
| PHASZERO    | Time of phase zero in IJD                               |  |  |

Table 57: Content of JMXi-DETE-FLC-IDX Data Structure.

| Column Name | Description                    |  |
|-------------|--------------------------------|--|
| PHASE       | Phase of the center of the bin |  |

| PHASEDEL | Half width in phase units (0-1) for the bin         |  |  |
|----------|-----------------------------------------------------|--|--|
| RATE     | Countrate in the given energy band                  |  |  |
| ERROR    | Countrate error in the the given energy band        |  |  |
| BRATE    | Background countrate in the given energy band       |  |  |
| BERROR   | Background countrate error in the given energy band |  |  |
| BARYTIME | Barycentric time for the bin                        |  |  |

# C.11 Observation group level analysis

#### C.11.1 $j_{-ima\_mosaic}$

This executable creates the mosaic images of all the science windows used in the analysis. The output is written to the J\_MOSAIC\_#.fits files, where the number # indicates the energy band. In these files you find the mosaic images JMXi-MOSA-IMA data structures for each kind of "IMATYPE" mosaic maps. However, only some of the included keywords are relevant, as shown in the following table.

| Column Name | Description                         |
|-------------|-------------------------------------|
| IMATYPE     | Type of image                       |
| NAXIS1      | Size of the mosaic image in axis 1  |
| NAXIS2      | Size of the mosaic image in axis 2  |
| EXTNAME     | Extension name of the template      |
| INSTRUMENT  | JEM-X instrument: JMX1 or JMX2      |
| TSTART      | Start time of the observation (IJD) |
| TSTOP       | End time of the observation (IJD)   |
| TELAPSE     | Total elapsed time (s)              |
| BUNIT       | Pixel units                         |
| CTYPE1      | Projection name: "RA—TAN","1962"    |
| CTYPE2      | Projection name: "DEC—TAN","1962"   |
| CRVAL1      | Sky coord. ref. 1. axis (deg)       |
| CRVAL2      | Sky coord. ref. 2. axis (deg)       |
| CD1_1       | Transformation (deg)                |
| CD2_2       | Transformation (deg)                |
| CD1_2       | Transformation (deg)                |
| CD2_1       | Transformation (deg)                |
| CRPIX1      | Sky pixel ref. 1. axis (pixel)      |
| CRPIX2      | Sky pixel ref. 2. axis (pixel)      |
| E_MIN       | Lower Energy limit (keV)            |
| E_MEAN      | Mean Energy (keV)                   |
| E_MAX       | Upper Energy limit (keV)            |
| IMATYPE     | Type of sky map shown               |

Table 58: Content of JMXi-MOSA-IMA-IDX

#### C.11.2 src\_collect

This executable combines source data obtained by the imaging analysis for individual Science Windows into a single table covering an Observation Group. It is possible to retrieve only selected results, *e.g.*, just for a given source. The result is written to jemxi/jmxi\_obs.\_res.fits file. The description of JMXi-OBS.-RES data structure is given in the Table 59.

Table 59: Content of JMXi-OBS.-RES Data Structure.

| Column Name | Description               |  |
|-------------|---------------------------|--|
| SWID        | Science Window identifier |  |

| SOURCE_ID  | ISDC unique source identifier                                      |  |  |
|------------|--------------------------------------------------------------------|--|--|
| NAME       | One commonly used name for the source                              |  |  |
| RA_OBJ     | Source right ascension in degrees                                  |  |  |
| DEC_OBJ    | Source declination in degrees                                      |  |  |
| ERR_RAD    | Error radius in degrees                                            |  |  |
| DETSIG     | Source detection significance in JEM-X                             |  |  |
| OFFANGLE   | Off-axis angle in degrees                                          |  |  |
| EBIN_NUM   | Number of used elements in E_MIN, E_MAX, FLUX, FLUX_ERR            |  |  |
| E_MIN      | Lower energy boundaries                                            |  |  |
| $E_{-}MAX$ | Upper energy boundaries                                            |  |  |
| FLUX       | Flux values in $counts(100cm^2)^{-1}s^{-1}$                        |  |  |
| FLUX_ERR   | Flux errors in counts $(100cm^2)^{-1}s^{-1}$                       |  |  |
| DEADC      | Mean deadtime (& greyfilter) correction factor                     |  |  |
| EXPOSURE   | Mean exposure time over the detector plane in seconds              |  |  |
| TSTART     | Start time of the observation (IJD)                                |  |  |
| TSTOP      | End time of the observation (IJD)                                  |  |  |
| SEL_FLAG   | Source selection flag                                              |  |  |
| FLAG       | Generic flag                                                       |  |  |
| COSX_JMX   | Direction cosine between X-axis and source in instrum. coordinates |  |  |
| COSY_JMX   | Direction cosine between Y-axis and source in instrum. coordinates |  |  |
| COSZ_JMX   | Direction cosine between Z-axis and source in instrum. coordinates |  |  |

# $\mathbf{D}$ jemx\_science\_analysis parameters description

| Name                                            | Туре    | Description                                                                                                                                      |
|-------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| ogDOL                                           | string  | DOL of the Observational Group to be analyzed.<br>default: ""                                                                                    |
| jemxNum                                         | integer | JEM-X instrument number (1 or 2)<br>default: 2                                                                                                   |
| startLevel                                      | string  | Analysis level at which analysis begins. The names of the possible analysis levels are listed in the table 4 default: "COR"                      |
| endLevel                                        | string  | Analysis level at which analysis finishes. The names of the pos-<br>sible analysis levels are listed in the table 4.<br>default: "IMA2"          |
| skipLevels                                      | string  | Analysis levels to be skipped (use with caution!) default: "BKG,LCR,BIN_T"                                                                       |
| chatter                                         | integer | Verbosity level<br>possible values: 0 – 5<br>2 – normal<br>default: 2                                                                            |
| clobber                                         | boolean | Clobber existing output data?<br>default: y                                                                                                      |
| osimData                                        | boolean | Input data was created by ISDC simulator?<br>default: n                                                                                          |
| ignoreScwErrors                                 | boolean | Ignore all SW processing errors?<br>default: n                                                                                                   |
| Parameters copied to several binning data tasks |         |                                                                                                                                                  |
| nChanBins                                       | integer | Number of energy-resolved shadow<br>grams to create. If $<1,$ shadow<br>grams created in standard bands. Possible values: $-7-100$ default:<br>4 |
| chanLow                                         | string  | Lower channel boundaries for shadowgrams and light<br>curves default: "46 83 129 160"                                                            |
| chanHigh                                        | string  | Upper channel boundaries for shadowgrams and lightcurves default: "82 128 159 223"                                                               |
| timeStart                                       | real    | Start of time interval [IJD]<br>-1 – use Science Window bounds<br>default: -1                                                                    |

Table 60:  $jemx\_science\_analysis$  parameters description

| 1             | I               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| timeStop      | real            | End of time interval [IJD]<br>-1 – use Science Window bounds<br>default: -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| nPhaseBins    | integer         | Number of phase bins<br>(N < 0 = abs(N) equally spaced bins)<br>default: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| phaseBins     | string          | Phase bin sizes, separated by space default:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| radiusLimit   | real            | Use events within this detector radius [mm] possible values: $0.0 -130.0$ default: $122.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| F             | Parameters requ | nired for Instrument Characteristics selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IC_Group      | string          | DOL of the Instrument Characteristics master group. This group<br>is accessed by the script to find the calibration data relevant for<br>the current Science Window.<br>default:""<br>"//idx/ic/ic_master_file.fits[GROUPING,1]"                                                                                                                                                                                                                                                                                                                                                                |
| IC_Alias      | string          | Selection alias for Instrument Characteristics. By changing this alias different instances of IC data can be selected. default: "OSA"                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| instMod       | string          | DOL of JEM-X Instrument Model Group<br>(empty=find in IC)<br>default:""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| response      | string          | Filename of standard RMF and ARF<br>(empty=find in IC)<br>default:""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | Param           | eters specific to corrections ( <b>COR</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| COR_gainHist  | string          | DOL of the Index Group with gain variation history. This data is<br>stored per revolution and thus not accessible via the IC system.<br>default: ""                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| COR_gainModel | integer         | Gain history smoothing model to be applied<br>possible values:<br>-1 (default) Let the algorithm choose between the optimal model<br>to be used.<br>0 Linear interpolation between gain history values,<br>1 This model is obsolete.<br>2 Exponential gain decay with linear segment immediately after<br>switch. Models normal time variation of gain in a revolution<br>3 Non-trigger dependent model.<br>4 Hardware trigger dependency in the smoothing. If there is<br>no significant trigger variation during the revolution, then the<br>program defaults back to model 3.<br>default: -1 |

| $COR\_outputExists$          | boolean       | Assume already existing output default: "n"                                                                            |
|------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------|
| COR_randPos                  | boolean       | Should output positions be randomized within the pixel? default: "n"                                                   |
|                              | Parameters    | specific to Good Time Intervals ( <b>GTI</b> )                                                                         |
| GTI_gtiUser                  | string        | DOL of the input user GTI<br>default: ""                                                                               |
| GTI_TimeFormat               | string        | Time format to be used<br>possible values: "IJD", "UTC", "OBT"<br>default: "IJD"                                       |
| GTI_BTI_Dol                  | string        | DOL of a bad time interval table.<br>default: ""                                                                       |
| GTLBTLNames                  | string        | Input Bad Time Interval names to be considered default: "BAD_RESPONCE BAD_CONFIGURATION"                               |
| GTL <sub>att</sub> Tolerance | real          | Accepted attitude variability [arc min]<br>default: 0.5                                                                |
| GTI_limitTable               | string        | DOL of table with parameter limits default: ""                                                                         |
| GTL_gtiJemxNames             | string        | Names of instrumental GTIs to be included in merged GTI default: ""                                                    |
| GTL_gtiScNames               | string        | Names of spacecraft GTIs to be included in merged GTI default: ""                                                      |
| GTI_MergedName               | string        | Name of merged GTI to be used in analysis default: "MERGED"                                                            |
| GTI_Accuracy                 | string        | Used accuracy for OBT to IJD conversion and vice versa possible values: "any", "inaccurate", "accurate" default: "any" |
| ${\rm GTI\_AttStability\_Z}$ | real          | Accepted attitude stability tolerance of Z axis [arcmin] default: "3.0"                                                |
| Ι                            | Parameters sp | becific to Dead Time Calculation ( <b>DEAD</b> )                                                                       |
| DEAD_outputExists            | boolean       | Assume already existing output<br>default: "n"                                                                         |
|                              | Parameters    | specific to catalog extraction (CAT_I)                                                                                 |
| CAT_I_refCat                 | string        | DOL of the Reference Catalog<br>default: "\$ISDC_REF_CAT"                                                              |

| $CAT_I_usrCat$  | string     | DOL of the User Catalog. Currently not used.<br>default: ""                                                                                                                                                                                              |
|-----------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAT_I_radiusMin | string     | Low limit for the position selection. Can be multiple limits with<br>separating blank<br>default: "0 2.4"                                                                                                                                                |
| CAT_1_radiusMax | string     | High limit for the position selection. Can be multiple limits with separating blank default: "2.4 5.8"                                                                                                                                                   |
| CAT_I_fluxDef   | string     | Column used for flux selection.<br>default: "0"                                                                                                                                                                                                          |
| CAT_I_fluxMin   | string     | Low limit for flux selection.<br>default: ""                                                                                                                                                                                                             |
| CAT_I_fluxMax   | string     | High limit for flux selection.<br>default: ""                                                                                                                                                                                                            |
| CAT_I_class     | string     | Object class of sources to select<br>default: ""                                                                                                                                                                                                         |
| CAT_I_date      | real       | IJD for the public data.<br>possible values:<br><0 – all public;<br>0 – all private;<br>>0 – according to DAY_ID<br>default: "-1"                                                                                                                        |
|                 | Parameters | specific to shadowgram binning ( <b>BIN_I</b> )                                                                                                                                                                                                          |
| BIN_L_evtType   | integer    | Event type<br>possible values:<br>0 - FULL,<br>1 - REST,<br>-1 - both<br>default: -1                                                                                                                                                                     |
| BIN_L_shdType   | integer    | Type of shadowgram<br>possible values:<br>0 - skew<br>1 - shadowgram based on corrected event positions<br>2 - shadowgram based on raw event positions (required for<br>j_ima_iros)<br>3 - shadowgram based on regularized detector pixels<br>default: 2 |
| BIN_I_shdRes    | string     | DOL of the output shadowgrams default: ""                                                                                                                                                                                                                |
| BIN_I_rowSelect | string     | CFITSIO selection string on events. Ensures removal of all hotspot events and other seriously bad events default: "&&STATUS<256&& "                                                                                                                      |

| BIN_1_gtiNames        | string  | Names of GTI tables to be used default: ""                                                                                                                              |
|-----------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIN_1_chanLowDet      | string  | Three lower channel boundaries for shadowgrams for source detection default: " 46 96 135"                                                                               |
| BIN_L_chanHighDet     | string  | Three upper channel boundaries for shadowgrams for source detection default: "95 134 178"                                                                               |
|                       | Parar   | meters specific to imaging (IMA)                                                                                                                                        |
| IMA_makeNewBPL        | boolean | Do you want to create a new backprojection file ?<br>default: no                                                                                                        |
| IMA_newBackProjFile   | string  | Base name of new backprojection file default: ""                                                                                                                        |
| $IMA\_detAccLimit$    | integer | Acceptance limit in JMXi-DETE-MOD data structure. Possible values: 1 – 65535 default: 16384                                                                             |
| IMA_skyImageDim       | integer | Sky image dimension. Possible values: 1:255, 2:511.<br>default: 2                                                                                                       |
| IMA_useDeadAnodes     | boolean | Do you want to include dead anodes areas ?<br>default: no                                                                                                               |
| IMA_maxNumSources     | integer | Max number of sources in IROS loop default: 10                                                                                                                          |
| IMA_edgeEnhanceFactor | real    | Edge enhancement factor. It is used to convert the sky-images to significance maps by amplifying the peaks near the edge relative to those near the center default: 1.0 |
| IMA_loopLimitPeak     | real    | Fractional peak power to stop IROS loop default: 0.025                                                                                                                  |
| IMA_detSigSingle      | real    | Detection significance for source acceptance default: 12.0                                                                                                              |
| IMA_skyRadiusFactor   | real    | Sky radius limit factor default: 1.0                                                                                                                                    |
| IMA_radiusLimit0      | real    | Detector radius limit $E < 6 \text{ keV} \text{ (mm)}$<br>default: 120.0                                                                                                |
| IMA_radiusLimit1      | real    | Detector radius limit $6 < E < 12$ keV (mm) default: 120.0                                                                                                              |
| IMA_radiusLimit2      | real    | Detector radius limit $12 < E < 20 \text{ keV} \text{ (mm)}$ default: 1107.0                                                                                            |

| IMA_radiusLimit3     | real    | Detector radius limit $E > 20 \text{ keV} \text{ (mm)}$<br>default: 110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IMA_interactionDepth | real    | Mean depth of interaction in the detector (mm) default: 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IMA_hotPixelLimit    | real    | Hot pixel limit factor above average default: 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IMA_skyImagesOut     | string  | Type of output sky images. There are the following types:<br>RECTIFIED: Rectified (cleaned) intensity maps (in<br>counts/cm <sup>2</sup> /s).<br>VARIANCE: Variance maps.<br>RECONSTRUCTED: Reconstructed Residual+Sources maps (in<br>counts/cm <sup>2</sup> /s) which only differ from the RECTIFIED maps if<br>sources have been found.<br>RAWINTENSITY: Raw intensity (strength) maps (in counts),<br>for which the vignetting correction is not applied.<br>RESIDUAL: Intensity map (in counts/cm <sup>2</sup> /s) after all found<br>source contributions have been subtracted<br>PIF: activate the PIF-weighted image generation algorithm (not<br>to be used with mosaic_spec)<br>Only the first five letters are required.<br>default: "RECONSTRUCTED, VARIANCE" |
| IMA_dolBPL           | string  | DOL of backprojection file list<br>default: "empty"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| IMA_bkgShdDOL        | string  | DOL of background shadowgrams<br>default: "empty"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IMA_relDist          | real    | Limit of relative distance (mm) to catalog position used for iden-<br>tifying sources<br>default: 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IMA_fluxLimit        | real    | Lower flux limit for alerts of unfound sources $[{\rm Counts/s^2}]$ default: $0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| IMA_searchRad        | real    | Range of search grid around nominal found source positions default: 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IMA_gridNum          | integer | Number of grid steps on one side of search grid default: 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IMA_distFuzz         | real    | 'Fuzz' allowed in relative distances default: 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IMA_signifLim        | integer | Minimum number of pixels to make a contribution to the sky image default: 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| IMA_illumNorm        | integer | Flag for special re-normalization default: $\boldsymbol{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IMA_collHreduc       | real    | [mm] Reduction of collimator height for BPL production" default: 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| IMA_detImagesOut                                          | boolean                                                           | Should the images used for source detection be in output? default: yes                                                                                                          |  |  |
|-----------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| IMA_userImagesOut                                         | boolean                                                           | Do you want the user defined images to be written?<br>default: no                                                                                                               |  |  |
| Par                                                       | Parameters specific to source spectra extraction $(\mathbf{SPE})$ |                                                                                                                                                                                 |  |  |
| SPE_InSourceResult                                        | string                                                            | Input source result (JMXi-SRCL-RES)<br>default: ""                                                                                                                              |  |  |
| SPE_OutSourceSpectrum                                     | string                                                            | Output source spectra (JMXi-SRCL-SPE)<br>default: ""                                                                                                                            |  |  |
| SPE_OutSourceARF                                          | string                                                            | Output source spectra (JMXi-SRCL-ARF) default: ""                                                                                                                               |  |  |
| Parameters specific to source lightcurve extraction (LCR) |                                                                   |                                                                                                                                                                                 |  |  |
| LCR_timeStep                                              | real                                                              | Binning time for spectra in seconds, negative value means that<br>time bin is equal to the science window exposure.<br>default: 0.0                                             |  |  |
| LCR_vignCorr                                              | boolean                                                           | Correct for vignetting?<br>Forced to "yes". Vignetting correction is always applied.<br>default: y                                                                              |  |  |
| LCR_evtType                                               | integer                                                           | Event type (0=FULL, 1=REST, -1=both)<br>possible values:<br>0 - FULL,<br>1 - REST,<br>-1 - both<br>default: -1                                                                  |  |  |
| LCR_precisionLevel                                        | integer                                                           | <ul> <li>Speed - precision level, see more details in Section 8.7.1</li> <li>possible values:</li> <li>20 - the only value presently supported.</li> <li>default: 20</li> </ul> |  |  |
| LCR_fluxScaling                                           | integer                                                           | Flux scaling to area<br>possible values:<br>1 - Full area open to the illumination<br>$2 - 100 \text{cm}^2$<br>$3 - 1 \text{cm}^2$<br>default: 3                                |  |  |
| LCR_skipNearDeadAnode                                     | boolean                                                           | Ignore pixels near dead anodes?<br>default: y                                                                                                                                   |  |  |
| LCR_skipHotSpot                                           | boolean                                                           | Ignore pixels in hotspot area?<br>default: n                                                                                                                                    |  |  |

| LCR_tAccuracy        | integer     | Time Correlation accuracy<br>possible values:<br>0 - high,<br>1 - low,<br>3 - any<br>default: 3                       |
|----------------------|-------------|-----------------------------------------------------------------------------------------------------------------------|
| LCR_rowSelect        | string      | CFITSIO selection string on events default: ""                                                                        |
| LCR_useRaDec         | boolean     | Use sky coordinates (Ra,Dec) instead of instrument coordinates? default: y                                            |
| LCR_overrideCollTilt | real        | Value of collimator tilt parameter. If <0 use Instrument Model Group value. default: $-1.0$                           |
| Par                  | ameters sp  | ecific to detector spectra binning $(\mathbf{BIN}_{-}\mathbf{S})$                                                     |
| BIN_S_timeStep       | real        | Binning time [s] for spectra (0.0=bin all data)<br>default: "0.0"                                                     |
| BIN_S_rowSelectEvts  | string      | CFITSIO selection string on events<br>default: ""                                                                     |
| BIN_S_rowSelectSpec  | string      | CFITSIO selection string on spectrum mode data default: ""                                                            |
| BIN_S_evtType        | integer     | Data format to bin<br>possible values:<br>-1 - all,<br>0 - FULL,<br>1 - REST,<br>2 - SPTI,<br>4 - SPEC<br>default: -1 |
| Para                 | ameters spe | cific to detector lightcurve binning (BIN <sub>-</sub> T)                                                             |
| BIN_T_rowSelect      | string      | CFITSIO selection string on events<br>default: ""                                                                     |
| BIN_T_evtType        | integer     | Data format to bin<br>possible values:<br>-1 - all,<br>0 - FULL,<br>1 - REST,<br>2 - SPTI,<br>4 - SPEC<br>default: -1 |
|                      | Parameter   | s specific to <i>jemx_obs_analysis</i> (IMA_2)                                                                        |

| IMA2_mapSelect       | string  | Types of images to be selected. Possible values:RAW_RECT:Rectified (cleaned) intensity maps (in                                    |
|----------------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
|                      |         | counts/cm <sup>2</sup> /s).                                                                                                        |
|                      |         | RAW_INT: raw intensity (strength) maps (in counts), for which<br>the vignetting correction should not have been applied at the IMA |
|                      |         | level (by use of "NOVIGN" in the IMA_skyImagesOut parameter                                                                        |
|                      |         | line) but is applied at the mosaicking level.<br>RES+SRC: reconstructed Residual+Sources maps (ir                                  |
|                      |         | $counts/cm^2/s$ which only differ from the RAW_RECT maps i                                                                         |
|                      |         | sources have been found at the IROS imaging level.                                                                                 |
|                      |         | default: "RAW_RECT"                                                                                                                |
| $IMA2\_radiusSelect$ | real    | Input images selection radius in degrees                                                                                           |
|                      |         | default: 4.8                                                                                                                       |
| $IMA2\_eminSelect$   | real    | Minimum energy (keV) to select energy interval                                                                                     |
|                      |         | default: 0.0                                                                                                                       |
| $IMA2\_emaxSelect$   | real    | Maximum energy (keV) to select energy interval                                                                                     |
|                      |         | default: 80.0                                                                                                                      |
| IMA2_diameter        | real    | Diameter in degrees of the mosaic image (0: allows to fit the                                                                      |
|                      |         | mosaic size from the inputs, $< 0$ : can be used for larger mosaics default: 0.0                                                   |
|                      |         |                                                                                                                                    |
| IMA2_cdelt           | real    | Pixel size in degrees at mosaic center<br>default: 0.026                                                                           |
|                      |         |                                                                                                                                    |
| IMA2_RAcenter        | real    | Center of the mosaic image Right Ascension in degrees (If $<0$ use<br>the computed middle position of the mosaic)                  |
|                      |         | default: -1                                                                                                                        |
| IMA2_DECcenter       | real    | Center of the mosaic image Declination in degrees (not used in                                                                     |
|                      | rear    | RAcenter $<0$ )                                                                                                                    |
|                      |         | default: 0.0                                                                                                                       |
| IMA2_outfile         | string  | Prefix of the mosaic FITS file for each energy band                                                                                |
|                      |         | default: ""                                                                                                                        |
| IMA2_viewTime        | boolean | Create total exposure time map? (if $Y \rightarrow OBS\_TIME\_n.fits$                                                              |
|                      |         | where n is the number of combined input skymaps)                                                                                   |
|                      |         | default: "y"                                                                                                                       |
| $IMA2_viewIntens$    | boolean | Create raw Intensity map?                                                                                                          |
|                      |         | default: "y"                                                                                                                       |
| IMA2_viewVar         | boolean | Create Variance map?                                                                                                               |
|                      |         | default: "y"                                                                                                                       |
| IMA2_viewSig         | boolean | Create Significance map?                                                                                                           |
|                      |         | default: "y"                                                                                                                       |
| IMA2_view_nb         | boolean | Create a map that shows the number of input images contributing                                                                    |
|                      |         | to each pixel?<br>default "n"                                                                                                      |
|                      |         |                                                                                                                                    |

| IMA2_dolBPL     | string  | DOL of the vignetting maps, e.g.,<br>//ic/jmx1/rsp/jmx1_bpl_grp_0002.fits[JMX1-DMAP-BPL]<br>default: "" |
|-----------------|---------|---------------------------------------------------------------------------------------------------------|
| IMA2_print_ScWs | boolean | List input Science Windows in mosaic headers?<br>default: "n"                                           |
| IMA2_AITproj    | boolean | Project map in galactic coordinates using AIToff-Hammer pro-<br>jection?<br>default: "n"                |
| IMA2_srcFileDOL | string  | DOL of the output source list mosaic default:""                                                         |
| IMA2_srcselect  | string  | CFITSIO selection string applied to input tables default:""                                             |
| IMA2_srcattach  | boolean | Attach resulting table to group?<br>default: y                                                          |

# References

- [1] ISDC/OSA-INTRO Introduction to the *INTEGRAL* Data Analysis. http://www.isdc.unige.ch/integral/download/osa/doc/current/osa\_um\_intro.pdf 1, 13, 17, 20, 33, 37, 39, 44, 50, 51, 53
- [2] JEM-X observer's manual http://integral.esac.esa.int/AO10/AO10\_JEMX\_ObsMan.pdf 1
- [3] JEM-X Analysis Scientific Validation Report http://www.isdc.unige.ch/integral/download/osa/doc/current/osa\_sci\_val\_jemx.pdf 1
- [4] ISDC/OSA–INST-GUIDE Installation Guide for the INTEGRAL Data Analysis System. http://www.isdc.unige.ch/integral/download/osa/doc/current/osa\_inst\_guide.pdf 16
- [5] IASW for JEM-X /DPE -Software Specification Document. Space Research Center PAS, Warsaw. Version 1.11 16/06/00.
- [6] Fenimore & Cannon, 1978, Appl. Opt., 17, 337.
- [7] Instrument Specific Software for JEM-X Architectural Design Document http://www.spacecenter.dk/~oxborrow/sdast/ISSW/ADD10.0.ps
- [8] Walter, R.; Favre, P.; Dubath, P. et al., 2003, A&A 411, L25 45